

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

A MODULAR APPROACH TO TIME-BASED UAN
SIMULATION DEVELOPMENT

by

Richard Betancourt

September 2007

 Thesis Advisor: Geoffrey Xie
 Second Reader: John Gibson

THIS PAGE INTENTIONALLY LEFT BLANK

 i

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate
for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2007

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE A Modular Approach to Time-
Based UAN Simulation Development
6. AUTHOR(S) Betancourt, Richard

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and
do not reflect the official policy or position of the Department of Defense or the U.S.
Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The necessity to project naval combat power throughout the littorals has resulted

in the explosion of growth in the development and implementation of wireless underwater
networks. Contrary to the terrestrial wireless signal, which uses electromagnetic
(radio) signals as a medium for the transfer of data, an underwater network utilizes
acoustic signals to carry data. Additionally, unlike the terrestrial counterpart, the
underwater acoustic network operates in a dynamic, ever changing environment that is
susceptible to dramatic shifts in ocean water columns that are influenced by numerous
parameters, e.g., density, temperature, depth, and current. Couple this with the
mechanical impediments of electronic equipment, operating in a waterborne environment,
and the problems begin to multiply exponentially. This thesis presents a new,
standardized application programming interface for the development of acoustic physics
models and network protocol stacks that can be dynamically loaded into an underwater
acoustic network simulator. The interface will meet the needs of the United States
Navy, scientific organizations, and private parties, by providing a key building block
of a robust, modular based simulation framework that will allow rapid and cost saving
research and development and testing of underwater networking technologies.

15. NUMBER OF
PAGES

133

14. SUBJECT TERMS
Underwater Acoustic Networks, Time-Based Simulation, Delay Tolerant
Networks, High Latency Protocols

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

A MODULAR APPROACH TO TIME-BASED UAN SIMULATION DEVELOPMENT

Richard Betancourt
Lieutenant, United States Navy

B.S., San Diego State University, 2001

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 2007

Author: Richard Betancourt

Approved by: Geoffrey Xie
Thesis Advisor

John Gibson
Second Reader

Peter Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The necessity to project naval combat power throughout

the littorals has resulted in the explosion of growth in the

development and implementation of wireless underwater

networks. Contrary to the terrestrial wireless signal,

which uses electromagnetic (radio) signals as a medium for

the transfer of data, an underwater network utilizes

acoustic signals to carry data. Additionally, unlike the

terrestrial counterpart, the underwater acoustic network

operates in a dynamic, ever changing environment that is

susceptible to dramatic shifts in ocean water columns that

are influenced by numerous parameters, e.g., density,

temperature, depth, and current. Couple this with the

mechanical impediments of electronic equipment, operating in

a waterborne environment, and the problems begin to multiply

exponentially. This thesis presents a new, standardized

application programming interface for the development of

acoustic physics models and network protocol stacks that can

be dynamically loaded into an underwater acoustic network

simulator. The interface will meet the needs of the United

States Navy, scientific organizations, and private parties,

by providing a key building block of a robust, modular based

simulation framework that will allow rapid and cost saving

research and development and testing of underwater

networking technologies.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ..1
A. UNDERWATER ACOUSTIC NETWORKING1
B. UNDERWATER ACOUSTIC NETWORK DEVELOPMENT

METHODOLOGY ..3
C. THESIS OUTLINE4

II. BACKGROUND ..5
A. OCEAN ENVIRONMENT5
B. DEVELOPING FOR THIS ENVIRONMENT7
C. A DISTRIBUTED TIME-BASED SIMULATION8
D. REQUIREMENTS OF THE TIME-BASED UAN SIMULATION10
E. SURVEY OF CURRENT UAN SIMULATION METHODS12

III. THE SERVER ...15
A. SERVER REQUIREMENTS15

1. Working with Acoustic Models15
2. Simulating Client Locations17

B. USE CASE ANALYSIS18
1. The Acoustic Model19
2. The Location Simulator21
3. The Server-Side User23
4. The Client24

IV. THE CLIENT ...27
A. CLIENT REQUIREMENTS27
B. USE CASE ANALYSIS29

1. The Client-Side User30
2. The Protocol Stack31
3. The UAN Simulation Server33

V. THE MODULAR IMPLEMENTATION35
A. USING JAVA ..35
B. SERVER IMPLEMENTATION37
C. CLIENT IMPLEMENTATION40
D. HANDLING THE PROBLEMS41

1. Portability41
2. Memory Management42
3. Error Handling43

E. THE UAN SIMULATION43
VI. VALIDATION ...45

A. PROGRAMMING FOR THE SIMULATION45
B. PROGRAMMING THE SERVER45

1. The Network Manager45
2. The Simulation Controller46

 viii

3. The User Interface48
4. The Acoustic and Location Simulators48

C. PROGRAMMING THE CLIENT50
1. User Interface and Network Manager51
2. The Simulation Client Controller52
3. The Protocol Stack53

VII. CONCLUSION AND FUTURE WORK57
A. CONCLUSION ..57
B. FUTURE WORK58

APPENDIX ..61
A. SIMULATION SERVER SOURCE CODE61

1. SimController.java61
2. SimNetworkManager.java73
3. JFrameCommandGUI.java78
4. SphericalAcousticModel.java90
5. sphericalmodel.h93
6. sphericalmodel.c93

B. SIMULATION CLIENT SOURCE CODE95
1. SimClientController.java95
2. SimClientNetworkManager.java99
3. JFramClinetCommandGUI.java104
4. BasicPingStack.java115

LIST OF REFERENCES ...119
INITIAL DISTRIBUTION LIST121

 ix

LIST OF FIGURES

Figure 1: Acoustic Model and System Use Case..............21
Figure 2: Location Simulator and System Use Case.22
Figure 3: System and Server-Side User Use Case.24
Figure 4: System and Client Use Case.26
Figure 5: System and Client-Side User Use Case.31
Figure 6: Protocol Stack and Client-Side User Use Case.32
Figure 7: System and Protocol Stack Use Case.33
Figure 8: System and UAN Simulation Server Use Case.34
Figure 9: Server Modular Implementation.37
Figure 10: The UAN Client Modular Implementation.40
Figure 11: The UAN Simulation Server GUI.48
Figure 12: Loading an Acoustic Simulation.50
Figure 13: A Client Connecting to the Server.51
Figure 14: The Server Response to Client Connection.52
Figure 15: Node2 Sending Ping to Node1.54
Figure 16: Node1 Receiving Ping from Node2.54
 .

 x

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. UNDERWATER ACOUSTIC NETWORKING

The necessity to project naval combat power throughout

the littorals has resulted in the explosion of growth in the

development and implementation of wireless underwater

networks. Contrary to the terrestrial wireless signal,

which uses electromagnetic (radio) signals as a medium for

the transfer of data, an underwater network utilizes

acoustic signals to carry data. Additionally, unlike the

terrestrial counterpart, the underwater acoustic network

operates in a dynamic, ever changing environment that is

susceptible to dramatic shifts in ocean water columns that

are influenced by numerous parameters of which density,

temperature, depth, and current are only a few. Couple this

with the mechanical impediments of electronic equipment,

operating in a waterborne environment, and the problems

begin to multiply exponentially. This thesis will propose a

new, standardized application protocol interface for the

development of acoustic physics models and network protocol

stacks that can be dynamically loaded into an underwater

acoustic network simulator. This will meet the needs of the

United States Navy, scientific organizations, and private

parties, by providing a robust, modular based simulation

framework that will allow rapid and cost saving research and

development and deployment of underwater networking

technologies.

Due to the physical characteristics of the ocean,

acoustic networks are currently the only viable means of

2

communicating wirelessly over distances of more than a few

tens of meters [1]. Radio waves will travel long distances

in water but only if the sea is conductive and the frequency

of the radio signal is between 30 and 300 Hz. The equipment

that this requires is prohibitive for relatively small

autonomous underwater vehicles (AUVs). For example, while

testing of large vehicles, up to 72 inches and larger in

diameter, is underway, the Navy currently uses vehicles that

are no larger than a man’s leg in actual mine clearing

operations off the coast of Iraq [8]. Optical forms of

wireless communication are too unstable in an underwater

environment where, due to wave motion and other biological

obstacle, the refraction and deflection of light are too

unpredictable and prohibitive for use in communications.

While numerous organizations would benefit from and are

requesting the development of AUV based networks, the costs

associated with real world testing of network protocols is

prohibitive. For this reason, many research institutions

are looking towards simulations to provide some clues as too

the performance characteristics of the developed

technologies. This greatly decreases the time and overall

cost of research and development. However, current methods

used by the networking community to develop underwater

networking protocols are limited to event-based simulation

and do not support realistic, time-based simulation. While

event-based simulation is adequate in environments where the

latency can be considered non-existent when compared to the

processing/user response time, in the ocean environment the

latency must be considered. All the major network

simulators are based on well known terrestrial networking

hardware and protocols. For this reason, most underwater

3

acoustic network protocols are evaluated using modified

parameters of the radio-based models. However, they still

lack the ability to accurately model the physical medium –

the ocean.

B. UNDERWATER ACOUSTIC NETWORK DEVELOPMENT METHODOLOGY

This thesis will describe a software architecture that

will lend itself to the testing of UAN protocols. What is

needed in the world of network simulation tools is a robust

simulation base that will allow for the dynamic loading and

updating of a model of the physical medium and its key

characteristics as well as the network nodes’ communication

protocols. Depending on the acoustic model implemented,

users should be able to modify key parameters, e.g.,

temperature, salinity, or background noise. Developers and

users should also be able to develop acoustic models in

programming languages that are: 1) more popular in the

scientific communities, e.g., C or Fortran, and 2) can more

efficiently use the host system’s resources. These models

will then be loaded, at run time, through the use of the

Java Native Interface API and an associated wrapper class.

The client node simulation environment will also allow for

the dynamic loading of networking protocol stacks

specifically designed for the ocean environment that need to

be evaluated. Lastly, the simulation architecture will

allow users to develop and implement a node location

simulation that will model node movement in the environment.

This simulation base will build on a previous thesis by

Lieutenant Brian Long which provided a simple framework for

a distributed client-server based simulation and provided a

proof-of-concept of a distributed network simulation [3].

4

By applying the modular characteristics briefly

described above, and detailed in the following chapters, and

with the distributed framework developed by Lieutenant Long,

the attractiveness and feasibility of using COTS equipment

for testing, and deployment of this system to actual Navy

and civilian units, becomes a very feasible possibility.

C. THESIS OUTLINE

The thesis is organized as follows. Chapter II will

provide some background information into the nature of the

underwater acoustic environment. Chapter III will discuss

the modular application interface of the central host, or

server. Chapter IV will detail the application interface of

the network nodes, or clients. Chapter V will show the

implementation of a simplified acoustic model, location

model, and a UAN protocol stack. The final chapter, Chapter

VI, will close with ideas on possible future avenues of

development.

5

II. BACKGROUND

A. OCEAN ENVIRONMENT

We will start with an introduction into the ocean

environment, the desire for organizations to deploy

autonomous networks into the vast seas, the nature of sound

in the ocean, and why this must be the medium of

communications. This first section will only briefly touch

on the more important considerations of acoustic networking

and the physics involved. The reader is encouraged to refer

to the references, given at the end of this thesis, as a

starting point for more detailed discussions relating to

this area of computer science and physics.

The earth’s oceans comprise a greater proportion of the

total surface area than does the land. The potential uses

of these large volumes of water are being weighed heavily by

nations and private companies.

The trade between nations relies on the ability to

safely navigate across the vast stretches of water and

narrow straits. Potential biological and geological

discoveries still wait in many previously unexplored areas.

The world’s oceans also provide a natural defensive buffer

along the coasts of many nations, as well as a volume of

space in which to conduct covert offensive operations

[1][8][11]. Enabling technologies that would allow each of

these to continue or improve include the deployment of

unmanned autonomous underwater vehicles (AUVs) and the

acoustic networking technologies that allow for underwater

communications.

6

The oceans are harsh and dynamic environments.

Temperatures can vary greatly depending on the location and

depth. The depths of the oceans may be shallow, tens of

meters, or deep, the Mariana’s Trench is just over 10

kilometers in depth. The associated pressures that are

encountered as one proceeds deep make manned missions to the

depths limited and expensive. And, depending on the sea

state, the ability to conduct manned operations on or just

below the surface can be treacherous. For these reasons,

AUVs provide the right platform for safe and continuous

operations in the world’s oceans.

As the AUVs perform their missions they will be

collecting data. The AUVs may be deployed as a single unit

or as part of a larger cluster of vehicles. In either case,

a means of communicating between AUV nodes or from AUVs to a

surface/subsurface vessel will be essential for mission

accomplishment.

Terrestrial based means of communication do not perform

as desired or cannot be utilized without creating additional

problems. Wired, or tethered, links to the AUVs are simple

and easy to implement. However, this has several drawbacks.

First, maintaining the tethered link requires some kind of

mother ship to remain on station. Second, the range is

limited to the amount of wire on board the AUV, the mother

ship, or both. Third, the link connecting the AUV and

mother ship restricts maneuverability of both vessels and

could potentially foul either vessel’s propeller.

Radio communications are only effective for short

distances for medium to high frequencies and for long

distances at very low frequencies. The proper reception of

7

such longer distance radio signals would also require a

large antenna, potentially limiting an AUVs payload

capability and maneuvering ability while only supporting

extremely low data rates. Optical forms of communication

generally fail beyond a few tens of meters due to the

refraction of light [1].

Acoustic signals provide the optimal solution. By

utilizing acoustic signals we gain the benefits of wireless

communication without the distance limitations or cumbersome

antenna. However, the properties of sound in water do not

allow performance comparable to terrestrial radio network

communications. The speed of sound and the path the

acoustic signal take are dependant on many variables:

temperature, depth, frequency, biologics, etc [10]. The

average speed of sound varies but can usually be considered

1500 m/s [9]. This speed limitation, along with other

phenomena, such as shadow zones, channel ducts and very

limited bandwidth, present unique challenges for network

engineers.

B. DEVELOPING FOR THIS ENVIRONMENT

The greatest challenge facing protocol designers is to

find an environment in which to test the underwater

networking protocols. As mentioned above, the ocean

environment presents challenges to traditional wireless

networking protocols. The speed limitations of an acoustic

signal and wave nature of the acoustic path require delay

and fault tolerant protocols.

A tank, pool, or lake does not provide a realistic

testing environment. The ideal testing environment would be

8

at sea with real AUVs. However, the cost associated with

performing this kind of testing is prohibitive. Arranging

at sea training requires coordination between all interested

parties. The man-hours associated with preparing the ship,

AUVs, associated equipment, and actual deployment and

testing are tremendous. This is true especially if the

desired testing environment requires extensive travel time.

And, all the preparation, detailed testing plans, can go to

waste if Mother Nature does not cooperate.

Another method would be to test protocols in commercial

network simulation packages. These greatly reduce the costs

associated with performing the protocol testing and minimize

the development time. However, the majority of network

simulation packages are event based and cannot model the

time varying ocean environment well, if at all. Secondly,

these simulation packages were designed to test terrestrial

networks that model the wired and radio mediums used for

networking. In order to use these simulation packages, the

users must make some assumptions and modifications to the

existing radio wireless models which will have an effect on

test results [12].

C. A DISTRIBUTED TIME-BASED SIMULATION

Recent work in the area of underwater acoustic networks

at the Naval Postgraduate School showed the feasibility and

application of a distributed, client-server based

architecture for network simulation. Lieutenant Brian Long

developed a simulation framework that allowed clients,

network nodes running on commercial-off-the-shelf (COTS)

computers, to connect to a central server [3]. This

configuration has several advantages, discussed below.

9

A distributed simulation can be used to allow the

sharing of the load. The work associated with running and

evaluating UAN protocol stacks was pushed out to client

computers while the server was left to handle the bulk, and

perhaps the most important part of the simulation: the

calculation of the acoustic signal properties. The

distributed nature of the framework will also enable the

more accurate development of a time-based simulation

environment. The time-based simulation will allow the ocean

environment to be modeled realistically; the numerous

parameters involved with determining the acoustic signal

path and properties can be taken into account rather than

leaving it to a quasi-random process of discrete event based

simulations, which most terrestrial network simulations are.

However, what is lacking from the framework developed

by Lieutenant Long is an application programming interface

(API) that would allow for the dynamic loading of network

protocol stacks and acoustic models. This thesis will

describe an API which will allow developers and users to

easily create, test, and use existing and custom built

models and protocol stacks without the requirement of

learning a new programming language. This will greatly

improve development time and provide more realistic test

results. Development time is greatly reduced since no new

programming language is required to be learned, errors

associated with porting code are negated, and users can

quickly migrate the code directly from testing to

deployment. By utilizing more accurate acoustic models,

users can have greater confidence in the results they

receive from the simulation.

10

D. REQUIREMENTS OF THE TIME-BASED UAN SIMULATION

This section will outline the general requirements of

the overall system. Chapters III and IV will detail the

requirements, development, and usage of the modular server

and client, respectively. Some of these requirements were

originally outlined in [3] and are reiterated here for

consistency.

The core of the simulation system should be designed so

that it could be run on various types of hardware; a

dedicated server farm running complex models or laptop

computers by users in the field who need to quickly predict

network performance for the deployed area using real-time

environmental data, which could change in as little as a

matter of hours. The system is designed to simulate the

underwater environment in as many aspects as necessary and

consistent with the goals of the developer. This not only

requires calculating the time delay in propagating an

acoustic signal from a source to a destination, the latency,

but the effects of the environment upon the acoustic signal

itself, i.e., frequency effects and power attenuation. In

order to perform these calculations upon the acoustic

signal, the parameters affecting the water column should be

mutable. These parameters could be: salinity, temperature

(uniform temperature applied across an entire volume or as a

more complex sound speed profile type of gradient),

biologics (physical density, number and type per square

mile, noise level), shipping/mechanical noise (in harbors,

shipping lanes, and, more generally, the littorals, which

can greatly affect performance of acoustic signals), sea

state, and bottom type.

11

The acoustic model may also take into account the wave

nature of sound. This applies specifically to the

phenomenon known as shadow zones. A client UAN node may be

within a reasonable range of the source but due to the wave

nature of sound and the physical properties of the water

column, the sound signal will not reach it.

Most of the computational acoustic models developed and

being developed in the field of ocean acoustic modeling are

written in languages such as C and Fortran [9] [13]. These

languages have been adopted by the scientific communities

because of the ability to interact with the hardware at a

low level as well as the speed and optimizations that these

languages allow. Interpreted languages or programs that

require the use of a virtual machine may not be able to

duplicate these capabilities [17]. For realistic modeling,

complex mathematical models have been developed and as such

require great amounts of computational power. Being able to

run pre-built and optimized code would improve overall

system performance and ease development requirements as

porting of proven, reliable code would not be necessary and

the benefits of software reuse could be maximized.

Development time would also improve since learning a new

language would not be required. While learning a new

programming language may not be difficult, learning a

programming language well enough to exploit the hardware

platform for maximum benefit can take time even for seasoned

programmers. A large selection of the various models

available can be found at the Ocean Acoustic Library [13].

The simulation system should also be able to run on a

single host or distributed across a network. This has

12

several benefits which will allow this system to be easily

utilized by deployed units and larger corporate type

research departments. Depending on costs and/or currently

installed infrastructure, the system can be run on a single

hardware platform, e.g., laptop or be set up on multiple

hosts to provide researchers, who may be across campus or

across the country, to connect and test acoustic models and

protocols.

The simulated UAN node, or client in the distributed

aspect of this system, should also implement a modular

architecture. The node, as in the server acoustic model,

should allow for the loading of protocol code that was

written in other languages. This would hold the same

benefits as mentioned above. Network parameters should be

dynamically adjustable. Client users should be able to

change the frequency, power, send and receive capabilities

(half-duplex vs. full-duplex), as well as other properties

of the acoustic modem/physical layer. The modeled node

should be maneuverable, in that it should be able to change

depth, speed, and course depending on the type of network

being modeled. To help in the acoustic simulation, the

server should maintain the location of each node in the

simulated environment.

E. SURVEY OF CURRENT UAN SIMULATION METHODS

This section will briefly outline some of the current

methods being employed by professionals working in the UAN

field; focusing on how the underwater environment is

simulated and development of protocols. While not all

inclusive, many aspects, pros and cons, will be discussed

13

and the benefits of the proposed framework introduced in

this thesis will be mentioned.

The Optimized Network Evaluation Tool (OPNET), by OPNET

Technologies, is a powerful discrete event network

simulation tool. It is designed to allow networking

professionals to develop and test protocols and other

network technologies. The OPNET Wireless Modeler allows

network engineers to model, simulate, and analyze wireless

networks. Additionally, grid computing capabilities are

built into OPNET to allow for distributed simulation. An

extremely powerful and popular network simulation tool,

OPNET has been used by many scientists working in the UAN

field [5] [12] [14] [15]. However, OPNET is not an ideal

solution for UAN simulation. As pointed out in [15] and

[16], OPNET does not model the physical, underwater medium.

Also, the OPNET Wireless Modeler does not have an acoustic

modeler; the acoustic signal is based on, with some

modifications, the provided radio models in OPNET [5] [12].

The Autonomous Undersea Systems Institute (AUSI) has

developed a distributed, client-server based, simulation

environment [6] [7]. The Cooperative AUV Development

Concept (CADCON) was designed to primarily evaluate the

interaction of existing autonomous vehicles in an underwater

environment. CADCON offers developers a simplified ocean

environment simulation which can be configured via

configuration files prior to execution. This underwater

network simulation tool provides a more realistic simulation

of the physical medium. However, if scientists desire to

use a different, more accurate or detailed environment

simulation, then the CADCON source code would have to be

14

modified and recompiled. For example, the CADCON

environment simulation does not model the noise generated by

shipping/pleasure craft or wave motion. Another drawback

for using CADCON, specifically in the research/academic

environment, is the inability to easily plug in various

protocols. As it currently stands, CADCON simulation

environment is designed to work with existing vehicles, via

socket communication, with their existing hardware/software.

If it was desired to have a different protocol used, the

vehicle would need to have the correct software loaded.

AUSI is working with the University of New Hampshire to

develop an ability to plug in various protocols and run them

on a simulated vehicle via VMware.

This thesis will outline an UAN simulation framework

that will address the weaknesses of the above mentioned

simulation tools. First, the framework proposed here will

allow various types of ocean environment acoustic models,

written in Java, C/C++, or Fortran, to be easily plugged

into the simulator and used with little or no source code

rework. The framework will implement a client-server based

environment to allow for load sharing and simulation

distribution. Lastly, in a similar manner to the ocean

environment acoustic model, existing or experimental

protocols may be plugged into the client side node with

ease.

The following chapter will detail the server

requirements and Chapter IV will discuss the simulated UAN

node or client requirements of the UAN simulation framework.

15

III. THE SERVER

A. SERVER REQUIREMENTS

The previous chapter provided a general description of

the UAN simulation server. In this chapter we detail the

server requirements, develop use cases, and then describe

the modular server architecture. To reiterate, the server’s

main purpose is to serve as the simulated communications

medium, the ocean, and “broadcast” simulated acoustic

messages to connected nodes. While this is the main focus

of the simulation, the details of all the associated classes

that make up the server will not be detailed. Those classes

handle the basics of the client-server networking and the

user interface. It is assumed that the reader is familiar

with this area of programming and the details of how they

are implemented are not the focus of this thesis and no new

insights may be gained by investigating those areas.

However, source code and UML class diagrams will be given in

the appendix.

1. Working with Acoustic Models

In Chapter II we noted that the acoustic model programs

are mainly written in C and Fortran. Although there is much

debate about the progress Java has made in recent years in

terms of performance, these languages still have their

benefits. Being able to generate object code in the native

form of the host computer will always have greater

performance characteristics if not during run time, then

during initial startup and overall memory usage. Secondly,

16

these are popular languages that the scientific community

has been using for years and they have developed high

performance libraries and tools. The Java community has

just recently been developing numerical libraries.

This thesis does not argue either for or against the

computational capabilities of Java or C, but must take these

facts into account and is one of the major requirements for

the UAN simulation system. The UAN simulation should allow

for the seamless utilization of acoustic models, potentially

written in a language other than Java, with little to no

code modification by the users of either the UAN system or

the writers of the acoustic modeling software. Given an

“acoustic signal”, a source, and a destination point, the

acoustic modeling software should return an “acoustic

signal” appropriately modified to reflect how the

destination point will hear it/receive it.

The acoustic modeling software may also allow users,

during runtime, to modify some of the physical parameters of

the ocean environment, i.e., temperature, salinity,

background noise level, sea state (to name a few). Due to

the ever changing and unpredictable nature of the ocean

environment, allowing deployed units to easily, at runtime,

modify the characteristics of the simulated environment to

reflect those that are actually found at the desired

location could allow them to then make needed modifications

to the network topology to better ensure end-to-end

connectivity. In this case, the simulation is a tool for

deployment management rather than protocol or application

development.

17

2. Simulating Client Locations

The server should at all times maintain a list of

client nodes and their location in the simulated ocean

environment for use in determining broadcast recipients of

an acoustic signal. The location of the node must be in

three dimensions. Simulated client nodes may be stationary

or following a specified course. The course can be changed

by the client at runtime. This frees the client nodes from

the burden of determining who is capable of receiving

signals as well as mitigating potential timing skew between

nodes.

This portion of the UAN simulation differs from that

developed by Long. The server does not maintain a complete

“god’s eye view” of the network topology. No XML file, with

node locations and channels is used. The use of an XML file

that statically predetermined the number of nodes and their

locations is too limiting. A node may join the simulation

at any time and is not predetermined by the choice of XML

file the server has loaded. Also, the channel on which a

node is listening should not be fixed nor is it required to

be known by the server. The channel a node is on is known

by the node and, depending on the protocol, any other nodes

in range. A node may also change its operating channel or

wish to listen to all channels that it physically can

receive.

These are the main areas of the modular UAN server that

need to be covered here. Other aspects of the server have

been designed with modularity as a guiding principle, but

are not discussed. One of the software components not

discussed in the body of this thesis is the user interface

18

component. Depending on how the UAN simulation is being run

and on what type of system, the user interface component

will handle the sending and receiving of information to and

from the system and present that information to the user in

the desired format, i.e., console based (text) or through

some kind of GUI.

The following section will look at who the actors are

of this portion of the system and what functions they need

to perform.

B. USE CASE ANALYSIS

In the previous section the word “system” has been used

rather freely but will now be defined more concretely for

purposes of performing use cases analysis. The system will

be comprised of the Simulation Control, Network Manager, and

User Interface. The Simulation Control portion of the

system provides the main logic and oversight of all actions

that take place; it is the hub of the overall UAN

simulation. The Network Manager performs the required

network socket instantiation for all incoming client

requests. The User Interface will provide an abstraction

layer for the sending and receiving of information between

the user and the simulation. Together, these three parts

will comprise the system.

This section will examine those actors that will

receive some sort of stimulus from the system, make a

request to the system, or both. The actors may be software

components that are vital to the overall performance of the

simulation or the simulation users. The acoustic model and

19

location simulation plug-ins are examples of the former. We

will examine what the actors are and the interaction between

these actors below.

1. The Acoustic Model

The first entity we will look at will be the Acoustic

Model. Despite being the core, or heart of server, the

Acoustic Model must be considered a separate and autonomous

actor. This is important for a couple of reasons. First,

it allows for the complete abstraction of the acoustic model

implementation. The acoustic model used may be simple or

complex. Spherical or cylindrical spreading calculation of

attenuation only is a simple mathematical model that only

requires a couple of parameters and requires only a single

line of code. However, a more complex model may be

implemented that will dynamically model an ocean environment

in real time and require the use of a multiprocessor system

or server farm, for example. Second, facilitating the

first, it removes dependency on what programming language is

used for implementing the acoustic model. This is an

important consideration when working with physicists in the

acoustic modeling arena. Requiring subject matter experts

to become familiar with a particular language can limit the

pervasiveness of the model framework. Therefore, it is

necessary to consider the Acoustic Model as a separate

actor.

As a separate, autonomous actor, the Acoustic Model

must perform, at a minimum, one task, or function: given an

acoustic signal, determine the acoustic signal properties at

a specified destination location from a given source

location. This function will be requested by the System.

20

However, limiting the functions that an Acoustic Model can

implement is short sighted and doesn’t allow for greater

simulation control. For example, deployed units may wish to

alter the ocean environment parameters dynamically before

and during the simulation to allow for a more accurate

simulation of the actual environment. This can be

accomplished by specifying a few more functions that an

Acoustic Model may implement. The user should be able to

query the Acoustic Model for a list of dynamically

adjustable parameters. The user may request a list of all

the parameters and their current values, alter their values,

if desired, and submit them to the model. The Acoustic

Model, given an allowable parameter and value pair, will

dynamically set the parameter to the given value and all

future acoustic modeling calculations will use that value.

Figure 1, below, diagrams the functions which users,

via the System, and the System should be able to request of

the Acoustic Model. The figure also clearly shows that the

Acoustic Model could actually be considered a separate

system. This is a main point in the development of the

overall UAN simulation. Specifically, the Acoustic Model,

as a separate system, could be running on the same system as

the bulk of the simulation software or on another, connected

platform or platforms, i.e., server farm, or grid/cluster

computers. This is similar in the approach that was taken

in [6] and [7]; however, as will be discussed in Chapter V,

the framework introduced here is more flexible; the

implementation of the model can be cleanly abstracted.

21

Figure 1: Acoustic Model and System Use Case.

2. The Location Simulator

The next actor we need to consider is the Location

Simulator. The purpose of this actor is to keep track of

all the simulated node locations. This may be a simple

static model where the nodes are “anchored” to the ocean

floor. Or, the nodes could be a type of unmanned underwater

vehicle (UUV) that can change course and speed throughout

the simulation.

Figure 2 shows the functions that the Location

Simulator should handle. The Location Simulator will,

similar to the Acoustic Model, be an autonomous component

22

that will serve the System. The majority of requests that

are made to the Location Simulator will come externally from

the clients that will modify the simulated node’s location.

The System should be able to perform the following

functions:

• Add a node to the Location Simulation

• Set a node’s location in three dimensions:

latitude, longitude, and depth

• Set a nodes speed and course

• Retrieve any of a given node’s parameters:

latitude, longitude, depth, speed, and course.

Again, by making the location simulator a separate entity we

can abstract the implementation.

Figure 2: Location Simulator and System Use Case.

23

3. The Server-Side User

The server-side user is the next entity considered. We

distinguish this user from the client or host node, which

will in most cases have a different user. The client-side

user will be discussed in Chapter IV. However, for now we

can simply and clearly state that the server-side user will

control the administration of the UAN simulation and the

client-side user will be administering the running of the

simulated client node wherever that host computer or

hardware device is located on the connected network. The

administrative capabilities that the server-side user should

control the basic server settings: starting, stopping,

setting network connection parameters. This user will also

have the following abilities: (1) select desired Acoustic

Model, (2) select desired Location Simulation, (3) set

Acoustic Model parameters, (4) view Acoustic Model

parameters, or (5) view an individual node or a list of all

connected nodes.

Figure 3 shows the functions that the server-side user

can access on the System. The functions that require

interaction with the Acoustic Model are shown as part of the

System vice as the server-side user interacting directly

with the Acoustic Model. There are a couple reasons for

this. First, the user interface, as mentioned above, is

part of the System and is the means of the server-side user

communicating with the server. Secondly, this centralizes

the software interfaces that would be required to only one,

vice two or more, and will improve software maintainability

and development.

24

Figure 3: System and Server-Side User Use Case.

4. The Client

The next and probably most important actor of the

system will be the network client or simulated node. This

client should not be confused with the client-side user.

Here the client is another computer or hardware device

simulating the underwater node that requests the simulation

services of the UAN Simulation server, while the client-side

25

user, as will be further discussed in Chapter IV, will

administer the node simulation on the connected host

platform.

Clients request the system to handle the simulated

broadcasting of an acoustic signal through the medium of the

underwater environment. These clients may be running on the

same host system as the server, across a small LAN setup in

a networking lab, setup across a routed LAN such as between

the physics department and computer science department, or

across the country between Universities or other agencies

(WAN). The actions required between the client and the

server can be broken into administration and simulation

based. The administration functions that the system must be

able to perform for the clients include the establishing and

managing the connection to the server. The simulation based

functions that the system must handle for the client are:

broadcast acoustic signal and update node course, speed,

depth, location information. Figure 4 provides a visual

representation of the functions the System must perform for

the client.

26

Figure 4: System and Client Use Case.

This chapter outlined the actors, or entities, of the

server and showed the more essential functions that the

server must be able to satisfy. The following chapter will

discuss the client.

27

IV. THE CLIENT

A. CLIENT REQUIREMENTS

The client is responsible for implementing some type of

network protocol stack to allow for communications between

nodes in an underwater environment. The protocols necessary

for working in this high latency, error prone, highly

variable, wireless networking environment are constantly

being worked on. However, the means of evaluating the

protocol performance is not ideal. When resources, timing,

and weather all work in your favor, then an actual test at

sea may be possible. Yet, the coordination required to

accomplish at sea testing is enormous and you cannot always

count on Mother Nature to cooperate.

Other methods used to evaluate the protocols are ad

hoc, at best. They rely on networking tools designed to

test out terrestrial networking technologies and protocols.

In order to test out protocols designed for the harsh ocean

environment, they use the provided wireless (radio) mediums

with some slight adjustments meant to model the delays and

variability of the ocean environment. Despite the

similarities in the wave propagation of the signal the other

variables of the ocean are not modeled to a fine enough

degree with those tools and the insights gained in to the

UAN performance are questionable. The current methods used

and the validity of the results obtained are discussed in

[15].

The client must be able to allow users to use various

types of protocols without having to worry about the details

28

of the simulated medium used to broadcast the signal. This

thesis builds on the previous work by Brian Long, which

abstracted the protocol stack to allow protocols to be

easily evaluated.

The client user needs a host system in which they are

able to plug in various types of protocol stacks,

dynamically, and with no recompiling of the client source

code. This should provide benefits, similar to what we saw

for the server, to the client user. The first will be to

allow users to use existing protocol stack code, written in

C/C++, Fortran, or Java, with little or no modification of

the original protocol or client node source code. This will

greatly improve the development and testing times.

Interested users and developers do not need to learn a new

programming language to use the system. There is no need to

translate the code from one language to another, which could

introduce numerous software bugs; no time wasted while

trying to learn a new programming language. Automated tools

are available to convert from Fortran to C, for example, but

the self-documenting nature of the original program’s

comments could be lost. Another benefit would be that the

original performance gains that were programmed into the

original code may be lost when translated, either by hand or

with the automated tools. The basic client requirements

will be stated below.

The most important requirement of the client portion of

the simulation is to allow users to quickly and easily plug

in various types of protocol stacks dynamically. Client

users should have little to no source code rewriting or

recompilation when attempting to integrate their protocol

29

stacks into the simulation. Secondly, the clients should be

able to make use of the simulation server whether they are

running on the same host system as the server, across the

room or campus, or across the country. This will provide

the abstraction necessary for the protocol developers to

concentrate more on protocol details rather than the details

associated with the medium.

The following section will discuss the actors and

associated functions that they will request/fulfill.

B. USE CASE ANALYSIS

The system will be compromised of the following

components: Client Controller, Network Manager, and User

Interface. The Client Controller provides the main logic

and coordinating body for the client. All non-simulation

related communications, i.e., administrative setup, will go

from the Client Controller to the Network Manager and out to

the server. The Network Manager is responsible for

establishing, maintaining, sending, and receiving

communication to and from the server. The User Interface

will provide the controls necessary for the user to interact

with the Client Controller as well as provide the client

with a means of interacting with the simulation protocol

stack. With the system thus defined, we can now detail the

actors and their associated functions.

There are three actors that will require some form of

interaction with the system and they are: the client-side

user, the Protocol Stack, and the UAN Simulation Server.

Each of these will be discussed below.

30

1. The Client-Side User

The first of these actors is the client-side user. The

user will require the ability to change the protocol stack

being used by the client node. The protocol stack the user

may choose to run on the client may be written in various

languages. The user may also desire to see the settings of

the acoustic modem, i.e., frequency or channel being used,

power settings, etc. The user may desire to dynamically

alter the node’s simulated course, speed, and depth during

runtime. Conversely, the user may wish to leave the node in

a static location or course.

The user will also require the ability to connect and

disconnect from the simulation server. The user must also

have some way of interacting with the network by sending and

receiving communications to and from the simulated network.

In other words, the user must have the ability to use the

protocol stack to communicate with other nodes.

Figure 5 provides a visual representation of the

functions the client-side user should be able to perform

upon the System.

31

Figure 5: System and Client-Side User Use Case.

2. The Protocol Stack

The second entity that will require interaction with

the system is the Protocol Stack. The Protocol Stack forms

the most important part of the client as it is what carries

the software code that needs to be evaluated in the

underwater environment. The Protocol will receive input

from the user or some automated program that the user has

implemented. The input from the user will move through the

32

stack and will leave the stack at level 1, the physical

layer (in the standard OSI model), and be sent through the

simulated network.

The Protocol Stack will also simulate the features

found at the hardware level, acoustic modem, and must,

therefore, allow some means of the user altering those

properties. That is, the Protocol Stack will contain the

power, frequency, and other properties that are usually part

of the acoustic modem. This will also allow the user to

select the send and receive capabilities of the modem, if

desired, i.e., half-duplex vice full-duplex.

Two diagrams are given here to show the functions that

the client-side user may perform upon the Protocol Stack and

the Protocol Stack upon the System; Figure 6 shows the

client-side user functions upon the Protocol Stack while

Figure 7 shows the Protocol Stack functions upon the System.

Figure 6: Protocol Stack and Client-Side User Use Case.

33

Figure 7: System and Protocol Stack Use Case.

3. The UAN Simulation Server

The final actor that must be considered is the UAN

simulation server. The server will respond to incoming

requests for connecting to, and disconnecting from, the

simulated network. Simulated communications will be sent to

the server and any incoming communications will be received

by the system. These communications can be administrative,

for example communications relating to connection

establishment, or simulated acoustic network communications.

The handling of the delayed nature of the

communications, the latency, and the more pronounced

occurrence of collisions is an important topic and will be

addressed here. This thesis builds on previous work and

follows similar logic as found in [3]; the client-side

simulated node is responsible for handling the latency and

determining potential collisions. This is logical for a

couple of reasons. One, this further frees up resources on

34

the server if it does not need to manage the timing of

outgoing messages and determination of collisions for

potentially many simulated clients. Second, the simulated

nodes may have the capability to handle various

communication schemes, i.e., half-duplex, full-duplex, or

multi-channel simultaneous communications and it is logical

to leave the handling of these schemes to the clients that

are then free to implement as appropriate.

Figure 8: System and UAN Simulation Server Use Case.

This chapter discussed the entities and their

associated functions on the client side of this distributed

simulation. The following chapter will detail the

implementation of these requirements into a modular software

architecture.

35

V. THE MODULAR IMPLEMENTATION

A. USING JAVA

Java provides numerous advantages and is ideally suited

for this type of application. The UAN simulation by design

is distributed and should be able to run on multiple types

of platforms. These may be small laptops, desktops, or

powerful servers. Regardless of the hardware platform that

the system is being run on, the simulation should perform

seamlessly. And Java provides that power.

Another advantage of Java is the ability to make use of

native methods, or code that is written in a different

language, C for example, and compiled for a specific

hardware platform. This will allow simulation users to make

use of software that has been optimized for a specific

purpose or platform. The acoustic models often require

highly optimized code to perform the multitude of

calculations that are necessary. Also, many of the acoustic

models have existed for quite some time and have been

written in older languages, such as Fortran. Rather than

having to go through a painstaking and error prone process

of translating the code, Java provides a means of calling

those programs with little or no modification to the

original source code.

In order to make use of the native code, Java uses what

it calls the Java Native Interface (JNI). The JNI is a

powerful addition to the Java API family and was introduced

early by Sun Microsystems into the Java Development Kit

(JDK) 1.1. A Java application that makes use of the JNI to

36

call native code will have several advantages that are not

built into the Java Virtual Machine (JVM).

Native code has the ability to call and make use of

specific hardware functionality which would otherwise not be

accessible from the JVM. Source code may be compiled with

specific optimization flags set that will create code that

is ideally suited for a specific hardware platform, which

would not be possible running only through the JVM.

However, developing software that depends on the native

methods has some drawbacks.

Programming with the JNI reintroduces many of the

errors that Java was designed to eliminate. First, Java was

designed to allow programs to be run on any hardware

platform that had a supporting JVM. This “write once, run

anywhere” development philosophy is destroyed when Java

programs are written that require native methods. The

native methods, if they are going to work on other

platforms, must be recompiled for that specific platform.

Secondly, memory management, or garbage collection, is not

provided for the native written code. Native code has the

ability to create and modify Java objects as well as call

other Java methods that may create or return new instances

of a Java object. This presents possible memory leaks if

not properly handled in the native code and/or the Java

code. Third, errors must be properly handled by both the

native methods and the Java code. If an error is generated

in the native methods it must be handled properly to prevent

the native code from crashing and causing unpredictable

problems for the code running on the JVM.

37

The following sections will detail the implementation

of the modular server and client software architecture. The

particular advantages of using JNI will be shown and the

specific potential difficulties with using native methods

will be addressed.

B. SERVER IMPLEMENTATION

Figure 9: Server Modular Implementation.

As was described in Chapter III and shown above in

Figure 9, the software components of the server will be

comprised of its core system, the Network Manager,

Simulation Control, and User Interface, as well as the

Acoustic Simulator and Location Simulator. Together, the

core of the system will be light weight and each component

will be limited in scope.

38

The Network Manager provides the network connection

management and the User Interface provides a means of

displaying system messages and receiving input from the

user. The Simulation Control performs simple logic to

determine how an incoming/outgoing message should be handled

and take the appropriate action. However, the system will

still be broken up into logical classes that will enable

developers to augment and/or otherwise modify them to suit

the user’s specific needs with no need to modify large

blocks of unrelated code. For example, the developers may

wish to modify the User Interface to adapt it to a console,

text-based interface vice a GUI. The core of the system is,

and should be maintained as, light weight and limited in

scope.

These core blocks can be entirely written in Java with

little to no performance penalties and maintain the

portability of the entire system. The core system will then

allow the remaining two components, the Acoustic Simulation

and Location Simulation to be plugged in.

These two components can become quite computationally

intensive. Also, the desired acoustic model that should be

implemented may vary depending on the user’s needs. This

could require the running of code that was written in C, for

example, for performance or legacy reasons. The Acoustic

Simulation, due to the requirements discussed in Chapter III

and briefly mentioned above, will be considered a separate

component from the core system.

The core of the system will allow the developer and

user to use almost any type of acoustic model they choose by

providing a simple wrapper class. This wrapper class is

39

essentially a Java interface class, where the developer must

implement the given methods. How the developer implements

the methods will vary. The developer may use code written

in Java. However, the majority of acoustic modeling

software is written in C or Fortran. To allow users to make

use of these models, the developer only needs to implement

the given methods of the interface and also make use of the

JNI. Other methods may be written into any class that

implements the interface. By providing the skeleton set of

required methods, and due to the nature of Object Oriented

Programming and JNI, virtually any type of acoustic model

may be easily implemented by adapting the wrapper class,

through method implementations, to the desired model. The

overall amount of code that must be written should be

minimal and, since most acoustic modeling software works

with the basic data types of float, double, and integer,

there is no need to worry about potentially complicated

issue of converting between Java objects and other

languages’ data structures. However, JNI does provide for

this if developers desire to make use of it.

The Location Simulator implementation follows the same

logic and, therefore, is implemented in a similar manner.

The core system will use a Location Simulation interface to

allow the developer to easily write or import code into the

UAN simulator.

40

C. CLIENT IMPLEMENTATION

Figure 10: The UAN Client Modular Implementation.

The modular implementation of the client will follow

roughly the same principles as the server. The core of the

client will be light weight and limited in scope. Figure 10

above diagrams the relationship between the various

components.

Those components that will be part of the core client

are the Network Manager, User Interface, and Client

Controller; their basic functions are similar to their

respective counterparts. The component that needs to be

discussed further is the Protocol Stack.

The Protocol Stack, as described in Chapter IV, will be

used to allow users to test out various protocols in the UAN

simulation. The protocols may be written in a variety of

41

programming languages and, therefore, this component follows

the same design as the Acoustic Simulation and Location

Simulation components discussed above. The client will make

use of a Java interface class that will wrap the actual

implementation and make inconsequential to the client the

exact details of how it is implemented. To allow the JVM to

access the native code, developers will use the JNI to

provide the hooks that allow access to the native code.

D. HANDLING THE PROBLEMS

This section will discuss the issues associated with

running native code as part of a Java program. Each of the

problems discussed above will be handled in turn.

1. Portability

By using native code some may argue that we have now

killed one of the most desirable aspects of Java and thereby

negated an important claim this and a previous thesis make,

namely, that the UAN simulation will be able to run on any

hardware platform with a compatible JVM. As recognized

earlier, native code restricts the portability to hardware

platforms that are similar to the one for which the code was

compiled. However, we have split the components into

logical units that will maximize portability and

performance.

The core components are written entirely in Java. This

will provide a consistent GUI or console-based interface

across any platform on which this simulation is run and thus

improve usability and lower, if not eliminate, any time

users will need to become familiar with the interface.

42

Also, the main simulation logic and network management

facilities are maintained across hardware platforms and this

eliminates any potential problems that may arise in porting

these components. The only portions of the simulation that

will require recompilation are the native components of the

Acoustic and Location Simulations, and the Protocol Stack.

If acoustic models being used are written in a programming

language other than Java, then they will require an initial

recompilation to ensure the proper JNI headers are

incorporated into the source code to allow proper execution

when invoked by the JVM. Further, the acoustic model

software may be recompiled for the new platform it will be

running on to take advantage of compiler optimizations that

are available to improve the run-time performance. The

acoustic model software would, at most, have to be compiled

once for each hardware platform it will run on; the JNI

headers and compiler optimizations would be set during this

single compilation.

2. Memory Management

Memory management will not present any new problems

when incorporating JNI into the simulation. The Java

interface class does not require nor expect any type of Java

object to be returned; all variables returned are standard

data types that require no new memory allocation by the JVM

or the native code. The native code should not be calling

any Java methods. It is not required by the simulation, nor

should any acoustic model expect to have these methods

available. Therefore, no memory issues between objects

instantiated by the JVM and handed over to the native code

should be present. Finally, memory management, when working

43

with programming languages like C/C++ and Fortran, is always

of prime concern and presents no new programming or overall

simulation challenges.

3. Error Handling

The last problem that was brought up above was error

management. Specifically, the problem arises when an error,

fatal or not, develops in the native code. One solution

would be to have the native code create and throw an

exception back to the JVM. This would help maintain the

seamless integration and allow for graceful error handling.

However, this method requires some massaging of the native

source code to use the proper data structures and methods to

allow the native code to create and throw an exception back

to the JVM. Another method would be to have the native

method return some kind of error code, i.e., a unique

integer value to represent a fatal error. This method has

two drawbacks: (1) it too would require a rework of the

native source code, and (2) it lacks any further detailing

explanation as to what the actual error is or what caused

it. Yet, this method would be easier to implement since no

knowledge of the JNI native methods for throwing exceptions

is required.

We present no ideal solution but rather leave it to the

developers/users to decide how they would best like to

handle errors generated in the native code.

E. THE UAN SIMULATION

Java and the JNI have allowed us to fully implement the

framework outlined in the previous two chapters into a

44

robust, manageable, and, most importantly, into a usable

development and evaluation platform for underwater acoustic

networking. With a modular server, Figure 9, and client,

Figure 10, developers are given much greater power and

flexibility when choosing how they would like to evaluate

UAN performance. The source code for a small demo server

and client implementation are provided in the appendix.

In the following chapter we will validate the framework

described in this thesis by implementing an Acoustic

Simulation in C and running a simple network ping

application as part of the client Protocol Stack.

45

VI. VALIDATION

A. PROGRAMMING FOR THE SIMULATION

This chapter will detail the software that was

developed to demonstrate the ease and practicality of the

framework outlined in this thesis. The demonstration

software discussed below was developed to use three host

systems connected through a network hub utilizing 100Mbs

Ethernet links. The first software component and host

system that will be shown is the UAN Simulation server,

which will be running on a Pentium 4, 2GB RAM, Windows XP

(SP2) based desktop computer with Java Virtual Machine

version 1.6.0.02. The remaining two hosts will run separate

instances of the client software. These two computers are

comprised of similar hardware architectures and Java Virtual

Machines as the host server, however, these two computers

will be running Ubuntu Linux version 7.04.

B. PROGRAMMING THE SERVER

As was discussed in chapter III and V, the server is

composed of the following basic software components: User

Interface, Network Manager, and Simulation Controller. The

server is also composed of dynamically loadable components,

the Acoustic and Location Simulators.

1. The Network Manager

The Network Manager that was developed for the

demonstration implements a simple, threaded server; the

server, once started, will create a new thread and socket

46

for communicating with each client. Each new communication

thread will be maintained by the Network Manager. However,

the ability to send and receive communications, simulated

UAN acoustic messages, will be handled by the Simulation

Controller. When a client connects to the server it will

register itself into the simulated environment. This

entails setting a node name, location, and course. Node

names may be a simple text string, e.g., node1, or a

simulated IP Address depending on the users requirements.

The node name is used by the simulation server for storing

and retrieving information related to a particular client,

for example, retrieving the location of simulated node for

the location simulator, which will be discussed below. Once

the client has been registered with the system, the

Simulation Controller is then given control over the

communication thread.

2. The Simulation Controller

The Simulation Controller is the nerve center for the

UAN Simulation server. All incoming and outgoing simulated

UAN acoustic messages as well as user commands will pass

through the Simulation Controller. The Simulation

Controller implements a set of three first-in-first-out

queues: an incoming queue, an outgoing queue, and a user

command queue. These queues operate on a round-robin type

priority scheme where each queue is examined for messages.

If a message exists the message is handled appropriately,

then the Simulation Controller moves onto the next queue,

etc. If no messages exist in any of the queues, then the

47

system waits until a new message is received at which point

the Simulation Controller is alerted and the appropriate

queue is checked.

The incoming queue will handle the simulated acoustic

communications that a client sends. Upon receiving the

simulated acoustic signal, the Simulation Controller will

retrieve the sending nodes location as well as the location

of all other nodes in the simulated environment. The

sending node acoustic signal and location as well as the

location of the each destination node will be sent to the

Acoustic Simulator. The Acoustic Simulator will determine

the acoustic signal properties, e.g., propagation delay,

power, and/or frequency, and then place the derived acoustic

signal into the outgoing queue, waiting to be sent to the

appropriate simulated node.

The Simulation Controller will also handle user

commands. User commands may be simple administrative

commands for setting the appropriate network settings, i.e.,

port number. A user command could also request information

or parameters from the Acoustic and Location Simulators. The

ability to allow the User Interface to dynamically generate

graphical components that will effectively communicate the

information and parameters from the Acoustic and Location

Simulators is left for future work and is discussed briefly

in chapter VII. For this demonstration, the user commands

for the server are simple and give the user the ability to

set the port number, start/stop the server, and load an

Acoustic/Location Simulator.

48

3. The User Interface

The User Interface allows the developers to design a

interface appropriate for the hardware/environment the

simulation will be running in. This could be a simple

console text based interface or a detailed graphical

interface. The interface designed here is a simple GUI that

provides a menu of commands for the user to choose from

(discussed above) and a scrolling text field. The text

field will present informative messages, along with a time

stamp, to the user. Figure 11 shows the server GUI.

Figure 11: The UAN Simulation Server GUI.

4. The Acoustic and Location Simulators

The Acoustic and Location Simulators are the

dynamically loadable components of the UAN simulation and

could possibly be written in another programming language

besides Java. For the purposes of this thesis, a spherical

model of sound spreading with an average sound speed of 1500

49

m/s was developed in C. The choice of this simple model was

chosen to highlight the ease of incorporating the Java

Native Interface into the simulation. The Location

Simulator is written in Java.

To use the C program of the spherical model requires

the generation of system library; on Microsoft Windows this

is a Dynamically Linked Library (DLL) file and in Unix type

operating systems this is a “lib*.so” file. In this

demonstration the server is running on a Microsoft Windows

based computer and therefore requires generating a DLL.

Regardless of the type of library file, the process will

require four steps: (1) creating a Java wrapper class that

will load and call the native C program with the appropriate

parameters, (2) generating the appropriate C header files,

(3) compiling the Java wrapper source code to generate a

“.class” file, and (4) compiling the library file. Once

these steps are completed, the developers place the

generated library file into the appropriate directory. For

Microsoft Windows, this is the “\Windows\system32\”

directory.

Built into the Simulation Controller is the ability to

dynamically load Acoustic and Location Simulators. Users

can choose which acoustic simulator they wish to employ in

the UAN simulation by selecting the appropriate “.class”

file, the wrapper class that was generated in step (3), that

will call the appropriate library file. Figure 12 shows an

example of a user selecting the

“SphericalAcousticModel.class” file, which simulates the

model we want to use for this demonstration.

50

Figure 12: Loading an Acoustic Simulation.

The process of developing and loading a Location

Simulator is the same.

C. PROGRAMMING THE CLIENT

The UAN simulation client employs similar elements to

the UAN simulation server. The components for the client

include the Network Manager, Simulation Client Controller,

the User Interface, and the Protocol Stack. The Protocol

Stack is where developers have the ability to implement

desired protocol algorithms to suit there requirements and

dynamically load into the simulation. The other components

of the client will be briefly described.

51

1. User Interface and Network Manager

The User Interface for the client is similar to the

server. A menu of commands is given to the user and a

scrollable text field is also provided for informative

simulation messages.

The Network Manager that is implemented will allow

users to dynamically choose the server port and IP address

and then connect to the server. Once a socket connection is

established with the UAN simulation server, the client node

name, location, and course are sent to the server to be

registered. Once registered, the client node has

established a connection, control over the socket is given

to the Simulation Client Controller, and the client node is

then ready to begin simulated acoustic communications.

Figure 13, shows the results of a client node connecting to

a server and figure 14 shows the server side results.

Figure 13: A Client Connecting to the Server.

52

Figure 14: The Server Response to Client Connection.

2. The Simulation Client Controller

The Simulation Client Controller performs similar

functions that the server Simulation Controller performs.

A pare of FIFO queues are used to handle incoming and

outgoing communications. Incoming communications are split

into two main categories: administrative and simulation or

acoustic signal messages.

The administrative messages will be handled by the

Simulation Client Controller. These messages include those

needed to register the client on the server and

disconnection requests and responses to and from the server.

Simulation acoustic signal messages require the client

to simulate the required propagation delay. The incoming

acoustic signal will be placed in its own thread and will

remain dormant until required amount of time, the calculated

propagation delay as determined by the Acoustic Simulator

minus the network delay, has expired. The acoustic signal

53

will then be passed into the Protocol Stack. The process of

determining if an acoustic signal collision occurs is

handled by the Protocol Stack.

3. The Protocol Stack

The Protocol Stack allows developers to implement

desired network protocol algorithms and dynamically load

them. The network protocol algorithms may also be written

in another language other than Java and, therefore, may

require the use of the Java Native Interface. Developing

and implementing the Protocol Stack is carried out in the

same manner as the Acoustic and Location Simulators of the

UAN server. Once the Protocol Stack has been developed, it

is loaded and then can be used by the client. The

demonstration Protocol Stack implements a very simple “ping”

application. A client node selects which node to send a

ping to and then transmits the simulated ping. Figures 15

and 16 show a very simple “ping” application between two

simulated UAN client nodes.

54

Figure 15: Node2 Sending Ping to Node1.

Figure 16: Node1 Receiving Ping from Node2.

55

This chapter showed the feasibility of implementing the

framework described and utilizing the Java Native Interface

API. In the following chapter we will conclude the

discussion of the framework and point the way towards future

development and evaluation.

56

THIS PAGE INTENTIONALLY LEFT BLANK

57

VII. CONCLUSION AND FUTURE WORK

A. CONCLUSION

Building on the original distributed UAN simulation

developed by Brian Long and using the advanced Java JNI API,

a new framework has been developed to provide an ability to

incorporate pre-built software. The ability to use these

pre-built software components will greatly increase

productivity by decreasing the amount of software

development time and allow users to concentrate on obtaining

and evaluating results for the desired underwater acoustic

environment.

As discussed, the more accurate underwater acoustic

models as developed by the scientists in the physics area

are not being used by network developers. Most of these

models are computationally intensive and require a greater

amount of the host system’s resources. Instead of these

models, UAN developers are using modified terrestrial radio

frequency models, which brings into question the fidelity of

results obtained. Also, the ocean environment is not

modeled, which is a key factor in UAN performance. The

framework presented in this thesis allows UAN developers to

choose the acoustic model with the desired level of accuracy

and incorporate it into the simulation with little or no

need to alter the model’s source code and obtain potentially

more accurate results

The other area the framework developed here addresses

its ability to support various protocol stacks. The

protocols, written in various languages, can be used with

58

the UAN simulation with little or no required alteration of

the original source code. As is the case with some other

network simulation tools, the protocols that will be used in

the simulation require them to be written in another

language or script. Or, preexisting protocols may exist

which developers desire to implement and evaluate in the UAN

environment. The framework developed here allows the use of

protocols written in the language of the developer’s choice.

B. FUTURE WORK

An important area that needs to be evaluated is the

means of coordinating communications timing between the

clients and server. If the simulation server and clients

are all running on the same host, the problem of timing is

so small it can be safely ignored. And even in a small LAN,

where the simulation is not competing for bandwidth with

other non-simulation users, the physical network delay may

still be considered relatively small and may not need to be

taken into account. However, the distributed nature of this

simulation is an important element and the possibility of

users stretching across campuses, where the network

resources must be shared with other non-simulation users, is

more likely, the network delay must be taken into account as

well as the variability or skew of host system clocks.

Handling the latter problem will require the synchronization

of the client clocks. This will compensate for host clock

skew when timing (simulated propagation delay) of sent

simulation messages is handled by the clients. An obvious

means of synchronization would be to use a time server.

This server could be incorporated into the simulation or, as

is the case on most large networks, use a preexisting time

59

server. Another method that would take into account the

network delay and not require time synchronization would be

to implement a type of echo protocol. This echo protocol

would periodically send an echo ping to all attached

clients. The round trip time for each client would be

determined and a running average calculated. Individual

clients would have an average network delay value associated

with itself and the serve. This value would then be applied

to the delay time that the acoustic model determines and

sends to the destination client(s). For example, assume the

average network delay for client A is d1 milliseconds and

client B is d2 milliseconds. The server will take into

account the average network delay between nodes when

determining the propagation delay, if X is the propagation

delay, in milliseconds, then X – (d1 + d2) would be the

simulated propagation delay that B would need to wait, using

its own clock as a reference, before sending the message to

the simulated protocol stack.

Another area that needs to be looked at is the ability

to allow users to dynamically alter key simulation

parameters. Developers of the acoustic models, location

simulations, and clients should develop an XML specification

for the controls that are available in the models, the

parameters that are modifiable, and allow the clients and

servers to populate a user interface, GUI, with the

appropriate controls. For example, an acoustic model may

take as a parameter the variability of the ambient noise

level or alter the depths and speeds of the sound speed

profile. Another example would be to allow the client users

to alter the power and frequency of the acoustic model or

other protocol stack parameters. To accomplish this, an XML

60

document should be developed that would allow the developers

to specify what the parameters are (i.e., name of the

parameter and type), minimum and maximum values, etc. With

a standardized XML document used for parameter descriptions,

a parser could be added to the server and clients that would

allow them, upon loading of the specific acoustic

model/protocol stack, to generate the appropriate GUI

controls. The ability to generate these controls would

greatly increase the user’s ability to dynamically alter

environmental and client settings and more accurately model

the variability found in the ocean.

Performance of the proposed UAN simulation framework

needs to be measured. To accomplish this, acoustic physics

models and protocols need to be incorporated into the

framework and their performance evaluated. The evaluation

of performance needs to be broken up according to various

degrees of model complexity. This will generate key

performance metrics and allow developers to focus on

specific areas, i.e., simulation protocol overhead, and

generate required changes to the system. The application of

grid computing as a distributed system of the acoustic model

should also be examined as a means of improving the

performance of these computationally complex models.

Overall, a distributed and modular UAN simulation

framework has been proposed. This framework needs to be

used, metrics obtained, and from there future improvements

of this framework may be incorporated and provide those

exploring the ocean depths with a robust simulation tool for

deploying underwater networks.

61

APPENDIX

A. SIMULATION SERVER SOURCE CODE

1. SimController.java

package SimServer;

import Utilities.ICommandUI;
import Utilities.ISimController;
import Utilities.SimCommsThread;
import Utilities.SimInternalMessage;
import Utilities.Location;
import Utilities.LocationException;
import java.util.Enumeration;
import java.util.NoSuchElementException;
import java.util.Hashtable;
import Utilities.AcousticSignal;
import Utilities.SimMessage;
import Utilities.UANSimException;
import java.util.LinkedList;
import java.util.Random;
import java.io.IOException;
import java.lang.Math;

public class SimController implements
Utilities.ISimController
{
 public static enum USERCOMMANDS
 {
 /**Start the simulation*/
 STARTSIM,

 /**Stop the simulation*/
 STOPSIM,

 /**Start the network manager*/
 STARTSERVER,

 /**Stop the network manager*/
 STOPSERVER,

 /**Request server information*/

62

 SERVERINFO,

 /**Set the server port number*/
 SETSERVERPORT,

 /**Request all client information*/
 ALLCLIENTINFO

 }

 private static final int MAXRAND =
(int)Math.pow(2.0,31.0);

 private IAcousticSim as;

 private ICommandUI cui;

 private ILocationSim ls;

 private SimNetworkManager snm;

 private Hashtable<String,SimCommsThread> clients;

 private LinkedList<SimInternalMessage> comms_inputqueue;

 private LinkedList<SimInternalMessage>
action_inputqueue;

 private LinkedList<SimInternalMessage> admin_inputqueue;

 private LinkedList<SimInternalMessage> outputqueue;

 private InputQueueHandler iqh;

 private OutputQueueHandler oqh;

 private Random rand;

 /** Creates a new instance of SimController */
 public SimController(ICommandUI ui)
 {
 this.cui = ui;

 this.as = null;
 this.ls = null;

63

 this.clients = new Hashtable<String,
SimCommsThread>();
 this.action_inputqueue = new
LinkedList<SimInternalMessage>();
 this.admin_inputqueue = new
LinkedList<SimInternalMessage>();
 this.comms_inputqueue = new
LinkedList<SimInternalMessage>();
 this.outputqueue = new
LinkedList<SimInternalMessage>();

 this.iqh = new
InputQueueHandler(this.comms_inputqueue,
this.admin_inputqueue, this.action_inputqueue, this);
 this.oqh = new OutputQueueHandler(this,
this.outputqueue);

 this.snm = new SimNetworkManager();
 this.snm.setController(this);

 this.rand = new Random();
 }

 public void setCUI(ICommandUI ui)
 {
 this.cui = ui;
 }

 public void setAcousticSimulator(IAcousticSim as)
 {
 this.as = as;
 this.iqh.setAcousticSim(this.as);
 }

 public void setLocationSimulator(ILocationSim ls)
 {
 this.ls = ls;
 this.iqh.setLocationSim(this.ls);
 }

 /**
 * Start the UAN simulator.
 */

64

 public void startSimulator()
 {
 /**
 * Before we try and start anything, make sure we
have an acoustic and
 * location simulators loaded.
 */
 if(this.as == null)
 {
 String err_msg = "ERROR: UNABLE TO START
SIMULATOR - NO ACOUSTIC SIMULATOR LOADED.\n";
 err_msg += "PLEASE LOAD AN ACOUSTIC SIMULATOR.";
 this.cui.errorMessageHandler(err_msg);
 return;
 }
 if(this.ls == null)
 {
 String err_msg = "ERROR: UNABLE TO START
SIMULATOR - NO LOCATION SIMULATOR LOADED.\n";
 err_msg += "PLEASE LOAD A LOCATION SIMULATOR.";
 this.cui.errorMessageHandler(err_msg);
 return;
 }

 /**Start the network manager and inform the user*/
 if(!this.snm.isRunning())
 {
 this.snm.startNetworkManager();
 String snmStatus = "SIMULATION NETWORK MANAGER
STARTED [IP ADDRESS: ";
 snmStatus += this.snm.getIPAddress() + " PORT: "
+ this.snm.getPort() + "]";
 this.cui.generalMessageHandler(snmStatus);
 }

 /**Start the input and output queue handlers*/
 this.iqh.start();
 this.oqh.start();

 /**Start the acoustic and location simulators and
inform the user*/
 this.as.startAcousticSim();
 this.cui.generalMessageHandler("ACOUSTIC SIMULATION
STARTED");

 this.ls.startLocationSim();

65

 this.cui.generalMessageHandler("LOCATION SIMULATION
STARTED");

 /**Everythins has started, inform the user*/
 this.cui.generalMessageHandler("UAN SIMULATOR
RUNNING");

 }

 public void stopSimulator()
 {
 //TODO: Add code to send admin messages to all
connected clients to inform
 // them that the server is shutting down.

 /**Stop simulation network manager*/
 if(this.snm.isRunning())
 {
 this.snm.stopNetworkManager();
 this.cui.generalMessageHandler("SIMULATION
NETWORK MANGER STOPPED");
 }
 else
 {
 //this.cui.generalMessageHandler("SIMULATION WAS
NOT RUNNING");
 return;
 }

 /**Lock all the queues and empty them*/
 synchronized(this.action_inputqueue)
 {
 this.action_inputqueue.clear();
 }

 synchronized(this.admin_inputqueue)
 {
 this.admin_inputqueue.clear();
 }

 synchronized(this.comms_inputqueue)
 {
 this.comms_inputqueue.clear();
 }

66

 /**Stop the input and output queue handlers*/
 this.iqh.setRunning(false);
 this.oqh.setRunning(false);

 /**Stop all the communication threads*/
 Enumeration sct_enum = this.clients.elements();
 while(sct_enum.hasMoreElements())
 {
 try
 {
 SimCommsThread temp =
(SimCommsThread)sct_enum.nextElement();
 temp.shutdownSocket();
 }
 catch(NoSuchElementException nsee)
 {

 }
 }

 /**Clear the hash table of all keys*/
 this.clients.clear();

 /**Stop the acoustic and location simulations*/
 this.as.stopAcousticSim();
 this.ls.stopLocationSim();

 this.cui.generalMessageHandler("ACOUSTIC AND
LOCATION SIMULATION STOPPED");

 }

 public void processInComms(SimInternalMessage sim)
 {
 /**Add the incoming message to the comms queue*/
 synchronized(this.comms_inputqueue)
 {
 this.comms_inputqueue.add(sim);
 this.iqh.interrupt();
 }
 }

 public void processOutComms(SimInternalMessage sim)

67

 {
 synchronized(this.outputqueue)
 {
 this.outputqueue.add(sim);
 this.oqh.interrupt();
 }
 }

 public void processAction(SimInternalMessage sim)
 {
 /**Add the incoming message to the action queue*/
 synchronized(this.action_inputqueue)
 {
 this.action_inputqueue.add(sim);
 this.iqh.interrupt();
 }
 }

 public void processAdmin(SimInternalMessage sim)
 {
 /**Add the incoming message to the admin queue*/
 synchronized(this.admin_inputqueue)
 {
 this.admin_inputqueue.add(sim);
 this.iqh.interrupt();
 }
 }

 public String processUserRequest(String request,
String... choices)
 {
 //TODO: Add code to send input from the server users
through the
 // ICommandUI interface.
 return null;
 }

 public void processUserInput(USERCOMMANDS uc, Object ...
input)
 {
 //TODO: Add code to handle all the possible inputs
we could get.

 switch(uc)
 {
 case STARTSIM:

68

 this.startSimulator();
 break;
 case STOPSIM:
 this.stopSimulator();
 break;
 case STARTSERVER:
 this.startNetworkManager();
 break;
 case STOPSERVER:
 this.stopNetworkManager();
 break;
 case SETSERVERPORT:
 try
 {
 int portnum = (Integer)input[0];
 if(portnum <= 0 || portnum >= 65536)
 {
 this.cui.errorMessageHandler("ERROR:
"+portnum+" IS NOT A VALID PORT NUMBER.");
 }
 else
 {
 try
 {
 if(this.snm.isRunning())
 {

this.snm.stopNetworkManager();

 this.snm = new
SimNetworkManager();

this.snm.setController(this);
 this.snm.setPort(portnum);

this.cui.generalMessageHandler("SERVER PORT NUMBER SET TO:
"+portnum);

this.snm.startNetworkManager();
 }
 else
 {
 this.snm.setPort(portnum);

this.cui.generalMessageHandler("SERVER PORT NUMBER SET TO:
"+portnum);

69

 }
 }
 catch(IOException ex)
 {

this.cui.errorMessageHandler("ERROR: IOException when
setting port number.");
 }

 }
 break;
 }
 catch(NumberFormatException nfe)
 {
 this.cui.errorMessageHandler("ERROR:
"+input[0]+" IS NOT A NUMBER.");
 break;
 }
 case SERVERINFO:
 String status = "The server is ";
 boolean serverrunning =
this.snm.isRunning();
 if(serverrunning)
 {
 status += "running.\n";
 }
 else
 {
 status += "not running.\n";
 }

 status += "The server IP address is: " +
this.snm.getIPAddress() + "\n";
 status += "The server port number is: " +
Integer.toString(this.snm.getPort());

 this.cui.generalMessageHandler(status);
 break;
 default:
 this.cui.errorMessageHandler("ERROR: UNKNOWN
COMMAND.");
 break;
 }
 }

 public void processFatalError(String msg)

70

 {
 this.cui.errorMessageHandler(msg);
 }

 public void addNewClient(SimCommsThread sct)
 {
 /**Randomly generate a name for this client*/
 String nodeName = "Node:";
 do
 {
 nodeName +=
Integer.toString(rand.nextInt(MAXRAND));
 if(this.clients.containsKey(nodeName))
 continue;
 break;
 }while(true);

 /**Assign the name to the simulation comms thread*/
 sct.setName(nodeName);
 //sct.start();

 /**Add it to the clients hashtable and start the
thread*/
 this.clients.put(nodeName,sct);

 this.cui.generalMessageHandler("HANDLING NEW
CONNECTION REQUEST");
 }

 /**
 * Returns a reference to the simulation communications
thread that is
 * connected to the client with the given node name.
 * @param name The name of the node we want the
communications thread for.
 * @return The communicaiton thread for the given node.
 */
 public SimCommsThread getCommsThread(String name)
 {
 return this.clients.get(name);
 }

 /**
 * This method will handle all administrative messages
coming from clients.
 */

71

 public void adminHandler(String name, String sim)
 {
 this.cui.generalMessageHandler("HANDLING ADMIN
COMMS");
 String[] input;
 input = sim.split(" ");
 if(input[0].equals("CLIENT_NAME"))
 {

 SimCommsThread sct1 = this.clients.get(name);
 sct1.setName(input[1]);
 this.clients.remove(name);
 this.clients.put(input[1],sct1);

 SimInternalMessage ms = new
SimInternalMessage();
 ms.setMessageType(SimMessage.MESSAGETYPE.ADMIN);
 ms.setContent("NAME_OK");
 ms.setNodeName(input[1]);
 synchronized(this.outputqueue)
 {
 this.outputqueue.add(ms);
 this.outputqueue.notify();
 }

 }
 else if(input[0].equals("SET_LOCATION"))
 {
 Location loc = new Location();
 try
 {

loc.setLatitude(Double.parseDouble(input[1]));

loc.setLongitude(Double.parseDouble(input[2]));
 loc.setDepth(Integer.parseInt(input[3]));
 }
 catch(LocationException le)
 {
 //
 }

 this.ls.processLocation(name, loc);

72

 SimInternalMessage ms = new
SimInternalMessage();
 ms.setMessageType(SimMessage.MESSAGETYPE.ADMIN);
 ms.setContent("LOCATION_OK");
 ms.setNodeName(name);
 synchronized(this.outputqueue)
 {
 this.outputqueue.add(ms);
 this.outputqueue.notify();
 }

 }
 else if(input[0].equals("DISCONNECT"))
 {
 SimCommsThread sct1 = this.clients.get(name);
 SimMessage sm = new SimMessage();
 sm.setMessageType(SimMessage.MESSAGETYPE.ADMIN);
 sm.setContent("DISCONNECT_OK");

 sct1.sendMessage(sm);
 sct1.shutdownSocket();

 this.clients.remove(name);
 this.ls.removeLocation(name);

 }
 }

 /**
 * The method will ensuring that data, usually an
acoustic signal coming back
 * from the acoustic simulator plug-in (IAcousticSim),
will be processed, i.e.
 * queued up for transmition to the client node.
 * @param sim The simulation internal message that
contains the data to send
 * to the node encapsulated in the
sim.nodeName data member.
 */
 public void processDataToNode(SimInternalMessage sim)
 {
 synchronized(this.outputqueue)
 {
 this.outputqueue.add(sim);

73

 }
 }

 private void startNetworkManager()
 {
 this.snm.startNetworkManager();
 String snmStatus = "SIMULATION NETWORK MANAGER
STARTED [IP ADDRESS: ";
 snmStatus += this.snm.getIPAddress() + " PORT: " +
this.snm.getPort() + "]";
 this.cui.generalMessageHandler(snmStatus);
 }

 private void stopNetworkManager()
 {
 this.snm.stopNetworkManager();
 this.cui.generalMessageHandler("SIMULATION NETWORK
MANGER STOPPED");
 }

 public Enumeration<String> getAllClients()
 {
 return this.clients.keys();
 }

 public void processError(String msg)
 {
 this.cui.errorMessageHandler(msg);
 }

}

2. SimNetworkManager.java

package SimServer;

import Utilities.*;
import Utilities.ISimNetworkManager;
import Utilities.SimCommsThread;
import Utilities.ISimController;
import java.util.*;
import java.net.*;
import java.io.*;

/**
 *

74

 * @author richard betancourt
 */
public class SimNetworkManager extends Thread implements
Utilities.ISimNetworkManager
{

 // Private Data Members

 /**Max number of nodes*/
 private int maxnodes = 10;

 /**Server port number*/
 private int portnumber = 2875;

 /**The server socket that will listen for nodes*/
 private ServerSocket serverSocket;

 /**Status of the server*/
 private boolean serverRunning;

 /**Flag to keep the server running*/
 private boolean keepServerRunning;

 /**
 * The simulator controller object to which all newly
maid connection threads will
 * be passed to.
 */
 private SimController controller;

 /** Default constructor. Creates a new instance of
SimNetworkManager */
 public SimNetworkManager()
 {
 this.controller = null;
 this.serverSocket = null;
 this.serverRunning = false;

 }

 /**
 * Set the port number.
 * @param port_num The port number on which the server
will listen for new connections from clients.
 */

75

 public void setPort(int port_num) throws IOException
 {
 if(port_num != this.portnumber)
 {
 this.portnumber = port_num;
 }

 }

 /**
 * Set the Controller object that this NetworkManager
will communicate with.
 * @param c The simulation controller to which this
network manager will pass
 * newly created threads for the controller to
use for communications.
 */
 public void setController(SimController c)
 {
 this.controller = c;
 }

 /**
 * Get the server port number.
 * @return The portnumber on which this server is
listening.
 */
 public int getPort()
 {
 return this.portnumber;
 }

 /**
 * Get the IP address of the this server.
 * @return The IP address that this client is on.
 */
 public String getIPAddress()
 {
 String ipaddress =
this.serverSocket.getInetAddress().toString();
 int index = ipaddress.indexOf("/");
 if(index == -1)
 return ipaddress;
 else

76

 return ipaddress.substring(index+1);
 }

 /**
 *Start the server.
 */
 public void startNetworkManager()
 {

 try
 {
 this.serverSocket = new
ServerSocket(this.portnumber,50,InetAddress.getLocalHost());
 this.keepServerRunning = true;
 this.start();

 }
 catch(IOException e)
 {
 System.out.println("IOException in
StartServer()");
 e.printStackTrace();

 }

 }

 public boolean isRunning()
 {
 return this.serverRunning;
 }

 /**
 * Stop the server.
 */
 public void stopNetworkManager()
 {
 this.keepServerRunning = false;
 }

 /**
 * The main method of this class which will loop
continuously waiting for
 * client connections. A socket timeout is set on which
the server will get
 * interrupted and then check if it should keep running.

77

 */
 public void run()
 {
 this.serverRunning = true;
 try
 {
 this.serverSocket.setSoTimeout(500);
 }
 catch(SocketException se)
 {
 //TODO: Add code here to handle the socket
exception
 }

 while(this.keepServerRunning)
 {
 try
 {
 Socket new_socket =
this.serverSocket.accept();
 new_socket.setKeepAlive(true);
 SimCommsThread new_thread = new
SimCommsThread(new_socket, "", this.controller);
 new_thread.start();
 this.controller.addNewClient(new_thread);
 }
 catch(SocketTimeoutException ste)
 {
 continue;
 }
 catch(IOException e)
 {
 this.serverRunning = false;
 String err_msg = "IOException in run() of
SimNetworkManager\n";
 err_msg += e.getMessage() + "\n";
 err_msg += "Server stopped.";

 this.controller.processFatalError(err_msg);

 }

 }

 try
 {

78

 this.serverSocket.close();
 }
 catch(IOException ex)
 {
 //Need to do something here.
 }
 this.serverRunning = false;

 }

 public void setController(ISimController controller)
 {
 this.controller = (SimController)controller;
 }
}

3. JFrameCommandGUI.java

package SimServer;

import Utilities.*;
import Utilities.ICommandUI;
import java.io.File;
import java.net.*;
import java.util.Calendar;
import java.util.Date;
import javax.swing.JOptionPane;
import java.text.SimpleDateFormat;

/**
 *
 * @author richard betancourt
 */
public class JFrameCommandGUI extends javax.swing.JFrame
implements ICommandUI
{
 private static final String GREETING = "UNDERWATER
ACOUSTIC NETWORK SIMULATOR, VERSION 0.2\nDEVELOPED BY
RICHARD BETANCOURT AND BRIAN LONG\n\n";

 private static final String DATE_FORMAT = "yyyy-MM-dd
HH:mm:ss";

 private static SimpleDateFormat sdf;

 /**The main simulation controller*/

79

 private SimController controller;

 /**A string which will be used to hold information
messages that are coming
 * back from the simulation controller and given to the
jEditorPane to display
 * for the users.
 */
 private String sim_info;

 /** Creates new form JFrameCommandGUI */
 public JFrameCommandGUI()
 {
 initComponents();

 /**Initialized the simulation controller*/
 this.controller = new SimController(this);

 sim_info = this.GREETING;

 this.jEditorPane_InfoPane.setText(sim_info);

 this.sdf = new SimpleDateFormat(DATE_FORMAT);

 }

 /** This method is called from within the constructor to
 * initialize the form.
 * WARNING: Do NOT modify this code. The content of this
method is
 * always regenerated by the Form Editor.
 */
 // <editor-fold defaultstate="collapsed" desc="
Generated Code ">
 private void initComponents()
 {
 jScrollPane1 = new javax.swing.JScrollPane();
 jEditorPane_InfoPane = new
javax.swing.JEditorPane();
 jMenuBar1 = new javax.swing.JMenuBar();
 jFileMenu = new javax.swing.JMenu();
 jMenuItem_Exit = new javax.swing.JMenuItem();

80

 jSimulatorMenu = new javax.swing.JMenu();
 jMenuItem_Start = new javax.swing.JMenuItem();
 jMenuItem_Stop = new javax.swing.JMenuItem();
 jMenuItem_LoadAcousticSim = new
javax.swing.JMenuItem();
 jMenuItem_LoadLocationSim = new
javax.swing.JMenuItem();
 jServerMenu = new javax.swing.JMenu();
 jMenuItem_StartNetMan = new javax.swing.JMenuItem();
 jMenuItem_StopNetMan = new javax.swing.JMenuItem();
 jMenuItem_GetServerInfo = new
javax.swing.JMenuItem();
 jMenuItem_SetPortNum = new javax.swing.JMenuItem();

setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON
_CLOSE);
 setTitle("UAN Simulator Server");
 addWindowListener(new java.awt.event.WindowAdapter()
 {
 public void
windowClosing(java.awt.event.WindowEvent evt)
 {
 formWindowClosing(evt);
 }
 });

 jEditorPane_InfoPane.setEditable(false);
 jScrollPane1.setViewportView(jEditorPane_InfoPane);

 jFileMenu.setText("File");
 jMenuItem_Exit.setText("Exit");
 jMenuItem_Exit.addActionListener(new
java.awt.event.ActionListener()
 {
 public void
actionPerformed(java.awt.event.ActionEvent evt)
 {
 jMenuItem_ExitActionPerformed(evt);
 }
 });

 jFileMenu.add(jMenuItem_Exit);

 jMenuBar1.add(jFileMenu);

81

 jSimulatorMenu.setText("Simulator");
 jMenuItem_Start.setText("Start");
 jMenuItem_Start.addActionListener(new
java.awt.event.ActionListener()
 {
 public void
actionPerformed(java.awt.event.ActionEvent evt)
 {
 jMenuItem_StartActionPerformed(evt);
 }
 });

 jSimulatorMenu.add(jMenuItem_Start);

 jMenuItem_Stop.setText("Stop");
 jMenuItem_Stop.addActionListener(new
java.awt.event.ActionListener()
 {
 public void
actionPerformed(java.awt.event.ActionEvent evt)
 {
 jMenuItem_StopActionPerformed(evt);
 }
 });

 jSimulatorMenu.add(jMenuItem_Stop);

 jMenuItem_LoadAcousticSim.setText("Load Acoustic
Sim");
 jMenuItem_LoadAcousticSim.addActionListener(new
java.awt.event.ActionListener()
 {
 public void
actionPerformed(java.awt.event.ActionEvent evt)
 {

jMenuItem_LoadAcousticSimActionPerformed(evt);
 }
 });

 jSimulatorMenu.add(jMenuItem_LoadAcousticSim);

 jMenuItem_LoadLocationSim.setText("Load Location
Sim");
 jMenuItem_LoadLocationSim.addActionListener(new
java.awt.event.ActionListener()

82

 {
 public void
actionPerformed(java.awt.event.ActionEvent evt)
 {

jMenuItem_LoadLocationSimActionPerformed(evt);
 }
 });

 jSimulatorMenu.add(jMenuItem_LoadLocationSim);

 jMenuBar1.add(jSimulatorMenu);

 jServerMenu.setText("Server");
 jMenuItem_StartNetMan.setText("Start Network
Server");
 jMenuItem_StartNetMan.addActionListener(new
java.awt.event.ActionListener()
 {
 public void
actionPerformed(java.awt.event.ActionEvent evt)
 {
 jMenuItem_StartNetManActionPerformed(evt);
 }
 });

 jServerMenu.add(jMenuItem_StartNetMan);

 jMenuItem_StopNetMan.setText("Stop Network Server");
 jMenuItem_StopNetMan.addActionListener(new
java.awt.event.ActionListener()
 {
 public void
actionPerformed(java.awt.event.ActionEvent evt)
 {
 jMenuItem_StopNetManActionPerformed(evt);
 }
 });

 jServerMenu.add(jMenuItem_StopNetMan);

 jMenuItem_GetServerInfo.setText("Get Server Info");
 jMenuItem_GetServerInfo.addActionListener(new
java.awt.event.ActionListener()
 {

83

 public void
actionPerformed(java.awt.event.ActionEvent evt)
 {
 jMenuItem_GetServerInfoActionPerformed(evt);
 }
 });

 jServerMenu.add(jMenuItem_GetServerInfo);

 jMenuItem_SetPortNum.setText("Set Port Number");
 jMenuItem_SetPortNum.addActionListener(new
java.awt.event.ActionListener()
 {
 public void
actionPerformed(java.awt.event.ActionEvent evt)
 {
 jMenuItem_SetPortNumActionPerformed(evt);
 }
 });

 jServerMenu.add(jMenuItem_SetPortNum);

 jMenuBar1.add(jServerMenu);

 setJMenuBar(jMenuBar1);

 javax.swing.GroupLayout layout = new
javax.swing.GroupLayout(getContentPane());
 getContentPane().setLayout(layout);
 layout.setHorizontalGroup(

layout.createParallelGroup(javax.swing.GroupLayout.Alignment
.LEADING)
 .addComponent(jScrollPane1,
javax.swing.GroupLayout.DEFAULT_SIZE, 400, Short.MAX_VALUE)
);
 layout.setVerticalGroup(

layout.createParallelGroup(javax.swing.GroupLayout.Alignment
.LEADING)
 .addComponent(jScrollPane1,
javax.swing.GroupLayout.DEFAULT_SIZE, 279, Short.MAX_VALUE)
);
 pack();
 }// </editor-fold>

84

 private void
jMenuItem_LoadLocationSimActionPerformed(java.awt.event.Acti
onEvent evt)
 {
 ILocationSim ias;
 URL[] fileURL = new URL[1];
 File locationclass;

 /**Display a file chooser dialog and load the class
file*/
 Loader loader = new
Loader(Loader.FILETYPES.JAVA_CLASS);
 locationclass = loader.openClass();
 if(locationclass == null)
 return;
 try
 {
 fileURL[0] = locationclass.toURI().toURL();
 }
 catch(MalformedURLException murle)
 {
 this.errorMessageHandler("ERROR: MALFORMED URL
WHEN TRYING TO LOAD FILE.");
 return;
 }

 /**Dynamically load the class and pass it to the
simulation controller*/
 URLClassLoader urlloader = new
URLClassLoader(fileURL);
 int index =
locationclass.getName().indexOf(".class");
 try
 {
 Class locationsim =
urlloader.loadClass("SimServer." +
locationclass.getName().substring(0,index));
 if(locationsim != null)
 {
 ias =
(ILocationSim)locationsim.newInstance();
 this.controller.setLocationSimulator(ias);
 this.generalMessageHandler("LOADED LOCATION
SIMULATOR");
 }
 else

85

 {
 this.generalMessageHandler("FAILED TO LOAD
LOCATION SIMULATOR");
 }
 }
 catch(ClassNotFoundException cnfe)
 {
 this.generalMessageHandler("ERROR: CLASS NOT
FOUND EXCEPTION WHEN TRYING TO LOAD LOCATION SIM.");
 }
 catch(InstantiationException ie)
 {
 this.generalMessageHandler("ERROR: INSTANTIATION
EXCEPTION WHEN LOADING LOCATION SIM.");
 }
 catch(IllegalAccessException iae)
 {
 this.generalMessageHandler("ERROR: ILLEGAL
ACCESS EXCEPTION WHEN LOADING LOCATION SIM.");
 }
 }

 private void
jMenuItem_LoadAcousticSimActionPerformed(java.awt.event.Acti
onEvent evt)
 {
 IAcousticSim ias;
 URL[] fileURL = new URL[1];
 File acousticclass;

 /**Display a file chooser dialog and load the class
file*/
 Loader loader = new
Loader(Loader.FILETYPES.JAVA_CLASS);
 acousticclass = loader.openClass();
 if(acousticclass == null)
 return;
 try
 {
 fileURL[0] = acousticclass.toURI().toURL();
 }
 catch(MalformedURLException murle)
 {
 this.errorMessageHandler("ERROR: MALFORMED URL
WHEN TRYING TO LOAD FILE.");
 return;

86

 }

 /**Dynamically load the class and pass it to the
simulation controller*/
 URLClassLoader urlloader = new
URLClassLoader(fileURL);
 int index =
acousticclass.getName().indexOf(".class");
 try
 {
 Class acousticsim =
urlloader.loadClass("SimServer." +
acousticclass.getName().substring(0,index));
 if(acousticsim != null)
 {
 ias =
(IAcousticSim)acousticsim.newInstance();
 this.controller.setAcousticSimulator(ias);
 this.generalMessageHandler("LOADED ACOUSTIC
SIMULATOR");
 }
 else
 {
 this.generalMessageHandler("FAILED TO LAOD
ACOUSTIC SIMULATOR");
 }
 }
 catch(ClassNotFoundException cnfe)
 {
 this.generalMessageHandler("ERROR: CLASS NOT
FOUND EXCEPTION WHEN TRYING TO LOAD ACOUSTIC MODEL.");
 }
 catch(InstantiationException ie)
 {
 this.generalMessageHandler("ERROR: INSTANTIATION
EXCEPTION WHEN LOADING ACOUSTIC SIM.");
 }
 catch(IllegalAccessException iae)
 {
 this.generalMessageHandler("ERROR: ILLEGAL
ACCESS EXCEPTION WHEN LOADING ACOUSTIC SIM.");
 }
 }

87

 private void
jMenuItem_StopNetManActionPerformed(java.awt.event.ActionEve
nt evt)
 {

this.controller.processUserInput(SimController.USERCOMMANDS.
STOPSERVER);
 }

 private void
jMenuItem_StartNetManActionPerformed(java.awt.event.ActionEv
ent evt)
 {

this.controller.processUserInput(SimController.USERCOMMANDS.
STARTSERVER);
 }

 private void
jMenuItem_SetPortNumActionPerformed(java.awt.event.ActionEve
nt evt)
 {
 int port_number;
 String input;
 while(true)
 {
 input = JOptionPane.showInputDialog(this,"Enter
a port number between 1 and 65535:","Enter
Port",JOptionPane.QUESTION_MESSAGE);
 if(input == null)
 {
 break;
 }
 else
 {
 try
 {
 port_number = Integer.parseInt(input);
 if(port_number <= 0 || port_number >=
65536)
 {

JOptionPane.showMessageDialog(this,"Not a valid port
number.", "Invalid port
number",JOptionPane.WARNING_MESSAGE);
 }

88

 else
 {

this.controller.processUserInput(SimController.USERCOMMANDS.
SETSERVERPORT,port_number);
 break;
 }
 }
 catch(NumberFormatException nfe)
 {
 JOptionPane.showMessageDialog(this,"Not
a number.","Invalid port
number",JOptionPane.WARNING_MESSAGE);
 }
 }
 }

 }

 private void
jMenuItem_GetServerInfoActionPerformed(java.awt.event.Action
Event evt)
 {

this.controller.processUserInput(SimController.USERCOMMANDS.
SERVERINFO);
 }

 private void
formWindowClosing(java.awt.event.WindowEvent evt)
 {
 jMenuItem_ExitActionPerformed(null);
 }

 private void
jMenuItem_ExitActionPerformed(java.awt.event.ActionEvent
evt)
 {

this.controller.processUserInput(SimController.USERCOMMANDS.
STOPSIM);
 System.exit(0);
 }

89

 private void
jMenuItem_StopActionPerformed(java.awt.event.ActionEvent
evt)
 {

this.controller.processUserInput(SimController.USERCOMMANDS.
STOPSIM);
 }

 private void
jMenuItem_StartActionPerformed(java.awt.event.ActionEvent
evt)
 {

this.controller.processUserInput(SimController.USERCOMMANDS.
STARTSIM);
 }

 /**
 * @param args the command line arguments
 */
 public static void main(String args[])
 {
 java.awt.EventQueue.invokeLater(new Runnable()
 {
 public void run()
 {
 new JFrameCommandGUI().setVisible(true);
 }
 });
 }

 // Variables declaration - do not modify
 private javax.swing.JEditorPane jEditorPane_InfoPane;
 private javax.swing.JMenu jFileMenu;
 private javax.swing.JMenuBar jMenuBar1;
 private javax.swing.JMenuItem jMenuItem_Exit;
 private javax.swing.JMenuItem jMenuItem_GetServerInfo;
 private javax.swing.JMenuItem jMenuItem_LoadAcousticSim;
 private javax.swing.JMenuItem jMenuItem_LoadLocationSim;
 private javax.swing.JMenuItem jMenuItem_SetPortNum;
 private javax.swing.JMenuItem jMenuItem_Start;
 private javax.swing.JMenuItem jMenuItem_StartNetMan;
 private javax.swing.JMenuItem jMenuItem_Stop;
 private javax.swing.JMenuItem jMenuItem_StopNetMan;

90

 private javax.swing.JScrollPane jScrollPane1;
 private javax.swing.JMenu jServerMenu;
 private javax.swing.JMenu jSimulatorMenu;
 // End of variables declaration

 public void errorMessageHandler(String msg)
 {
 this.sim_info += this.sdf.format(new
Date(System.currentTimeMillis())) + ">>> " + msg + "\n";
 this.jEditorPane_InfoPane.setText(this.sim_info);
 }

 public void generalMessageHandler(String msg)
 {
 this.sim_info += this.sdf.format(new
Date(System.currentTimeMillis())) + ">>> " + msg + "\n";
 this.jEditorPane_InfoPane.setText(this.sim_info);
 }

 public String getUserInput(String request, String...
choices)
 {
 return null;
 }

}

4. SphericalAcousticModel.java

/*
 * SphericalAcousticModel.java
 *
 * Created on August 1, 2007, 12:09 AM
 *
 * To change this template, choose Tools | Template Manager
 * and open the template in the editor.
 */

package SimServer;

import Utilities.AcousticSignal;
import Utilities.Location;

/**
 *
 * @author richard betancourt

91

 */
public class SphericalAcousticModel implements IAcousticSim
{
 /**The sound speed in meters/second*/
 private static final int SOUND_SPEED = 1500;

 /**Load the shared library*/
 static
 {
 System.loadLibrary("sphericalmodel");
 }

 private native double calculate(double distance, double
src_power);

 /** Creates a new instance of SphericalAcousticModel */
 public SphericalAcousticModel()
 {
 }

 /**
 * Determine the acoustic signal properties.
 * @param source - The source node location
 * @param destination - The destination node location
 * @param as - The acoustic signal
 */
 public AcousticSignal processAcousticSignal(Location
source, Location destination, AcousticSignal as)
 {
 AcousticSignal new_signal = new AcousticSignal();

 /**Calculate the distance between the nodes*/
 double dist =
distance(source.getLatitude(),source.getLongitude(),
destination.getLatitude(), destination.getLongitude());
 double new_power = calculate(dist,
(double)as.getPower());
 new_signal.setPower((int)new_power);
 new_signal.setFrequency(as.getFrequency());
 new_signal.setData(as.getData());
 new_signal.setTransTime(as.getTransTime());

 long delay = (long)(dist/((double)SOUND_SPEED/1000));

 new_signal.setDelay(delay);

92

 return new_signal;

 }

 /**
 * For this acoustic model, this method performs no
function
 */
 public void startAcousticSim()
 {

 }

 /**
 * For this acoustic model, this method performs no
function
 */
 public void stopAcousticSim()
 {
 }

 /**
 * Calculates distance in meters between two points
given as latitude and
 * longitude in decimal degree format.
 * @author Brian Long
 * @param lat1 the latitude of the first node
 * @param lon1 the longitude of the first node
 * @param lat2 the latitude of the second node
 * @param lon2 the longitude of the second node
 * @return a <code>double</code> representation of the
distance between nodes in meters.
 */
 private static double distance(double lat1, double lon1,
double lat2, double lon2)
 {
 double theta = lon1 - lon2;
 double dist = Math.sin(Math.toRadians(lat1)) *
Math.sin(Math.toRadians(lat2)) +
 Math.cos(Math.toRadians(lat1)) *
Math.cos(Math.toRadians(lat2)) *
 Math.cos(Math.toRadians(theta));
 dist = Math.toDegrees(Math.acos(dist));
 dist = dist * 60; //nautical miles
 dist = dist * 1852; //meters

93

 return dist;
 }//end distance

}

5. sphericalmodel.h

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class SimServer_SphericalAcousticModel */

#ifndef _Included_SimServer_SphericalAcousticModel
#define _Included_SimServer_SphericalAcousticModel
#ifdef __cplusplus
extern "C" {
#endif
#undef SimServer_SphericalAcousticModel_SOUND_SPEED
#define SimServer_SphericalAcousticModel_SOUND_SPEED 1500L
/*
 * Class: SimServer_SphericalAcousticModel
 * Method: calculate
 * Signature: (DD)D
 */
JNIEXPORT jdouble JNICALL
Java_SimServer_SphericalAcousticModel_calculate
 (JNIEnv *, jobject, jdouble, jdouble);

#ifdef __cplusplus
}
#endif
#endif

6. sphericalmodel.c

#include <jni.h>

#include "stdafx.h"
#include <math.h>
#include "sphericalmodel.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#endif

94

BEGIN_MESSAGE_MAP(CsphericalmodelApp, CWinApp)
END_MESSAGE_MAP()

// CsphericalmodelApp construction

CsphericalmodelApp::CsphericalmodelApp()
{
 // TODO: add construction code here,
 // Place all significant initialization in
InitInstance
}

// The one and only CsphericalmodelApp object

CsphericalmodelApp theApp;

// CsphericalmodelApp initialization

BOOL CsphericalmodelApp::InitInstance()
{
 CWinApp::InitInstance();

 return TRUE;
}

JNIEXPORT jdouble JNICALL
Java_SimServer_SphericalAcousticModel_calculate
 (JNIEnv *env, jobject obj, jdouble distance, jdouble
src_pwr)
{
 jdouble transloss = 20.0 * log10(src_pwr);

 return src_pwr - transloss;

}

95

B. SIMULATION CLIENT SOURCE CODE

1. SimClientController.java

package SimClient;

import Utilities.ICommandUI;
import Utilities.Location;
import Utilities.ISimController;
import Utilities.ISimNetworkManager;
import Utilities.SimCommsThread;
import Utilities.SimInternalMessage;
import java.util.Enumeration;
import java.util.NoSuchElementException;
import java.util.Hashtable;
import Utilities.AcousticSignal;
import Utilities.SimMessage;
import Utilities.UANSimException;
import java.util.LinkedList;
import java.util.Random;
import java.io.IOException;
import java.lang.Math;

/**
 *
 * @author richard betancourt
 */
public class SimClientController implements ISimController
{
 private static final int MAXRAND =
(int)Math.pow(2.0,31.0);

 private ICommandUI cui;

 private ISimNetworkManager snm;

 private LinkedList<SimInternalMessage> comms_inputqueue;

 private LinkedList<SimInternalMessage> admin_inputqueue;

 private LinkedList<SimInternalMessage> outputqueue;

 private ClientInputQueueHandler iqh;

 private ClientOutputQueueHandler oqh;

96

 private Random rand;

 private String clientName;

 private BasicPingStack basicstack;

 private Location init_location;

 /** Creates a new instance of SimClientController */
 public SimClientController(ICommandUI ui,
ISimNetworkManager snm)
 {
 this.cui = ui;
 this.snm = snm;
 this.comms_inputqueue = new
LinkedList<SimInternalMessage>();
 this.admin_inputqueue = new
LinkedList<SimInternalMessage>();
 this.outputqueue = new
LinkedList<SimInternalMessage>();
 this.iqh = new
ClientInputQueueHandler(this.comms_inputqueue,
this.admin_inputqueue,this);
 this.basicstack = new
BasicPingStack(this,this.cui,this.snm);

((JFramClientCommandGUI)this.cui).setProtocolStack(basicstac
k);
 //IProtocolStack ps =
((JFramClientCommandGUI)ui).getBasicPingStack();
 //if(ps == null)
 // System.out.println("PS NULL AFTER GET PROTOCOL
STACK");
 this.iqh.setProtocolStack(basicstack);
 this.oqh = new
ClientOutputQueueHandler(this.snm,this.outputqueue);

 this.oqh.start();
 this.iqh.start();

 }

 public void processInComms(SimInternalMessage sim)
 {
 synchronized(this.comms_inputqueue)

97

 {
 this.comms_inputqueue.add(sim);
 this.iqh.interrupt();
 }
 }

 public void processOutComms(SimInternalMessage sim)
 {
 System.out.println("IN PROCESSOUTCOMMS");
 synchronized(this.outputqueue)
 {
 this.outputqueue.add(sim);
 this.oqh.interrupt();
 }
 }

 public void processAction(SimInternalMessage sim)
 {
 //Should never get this from the server on the
client side
 }

 public void processAdmin(SimInternalMessage sim)
 {
 if(((String)sim.getContent()).equals("NAME_OK"))
 {
 this.cui.generalMessageHandler("CONNECTED TO
SERVER");

 //SEND LOCATION INFORMATION
 SimMessage msg = new SimInternalMessage();

msg.setMessageType(SimMessage.MESSAGETYPE.ACTION);
 msg.setContent(init_location);

((SimClientNetworkManager)this.snm).sendMessage(msg);
 }
 else
if(((String)sim.getContent()).equals("LOCATION_OK"))
 {
 //Don't need to do anything with this
 this.cui.generalMessageHandler("LOCATION SET");
 }
 else
if(((String)sim.getContent()).equals("DISCONNECT_OK"))
 {

98

 this.cui.generalMessageHandler("DISCONNECTED
FROM SERVER");
 }
 else
if(((String)sim.getContent()).equals("SIM_START"))
 {
 this.cui.generalMessageHandler("SIMULATION
STARTED");
 }
 else
if(((String)sim.getContent()).equals("SIM_STOP"))
 {
 this.cui.generalMessageHandler("SIMULATION
STOPPED");
 }
 else
 {
 this.cui.errorMessageHandler("UNKNOWN SIM
MESSAGE: "+((String)sim.getContent()));
 }
 }

 public void processDataToNode(SimInternalMessage sim)
 {
 //Do not need to do anything here.
 }

 public String processUserRequest(String request, String
... choices)
 {
 return null;
 }

 public void processFatalError(String msg)
 {
 this.cui.errorMessageHandler(msg);
 }

 public void processError(String msg)
 {
 this.cui.errorMessageHandler(msg);
 }

 public void setClientName(String name)
 {
 this.clientName = name;

99

 }

 public String getClientName()
 {
 return this.clientName;
 }

 public void setLocation(Location loc)
 {
 this.init_location = loc;
 }

 public Location getLocation()
 {
 return this.init_location;
 }

}

2. SimClientNetworkManager.java

package SimClient;

import Utilities.*;
import java.io.*;
import java.net.InetAddress;
import java.net.InetSocketAddress;
import java.net.Socket;
import java.util.LinkedList;

/**
 *
 * @author richard betancourt
 */
public class SimClientNetworkManager implements
ISimNetworkManager
{
 /**Private data members*/
 private static final int DEFAULT_SERVER_PORT = 2875;

 private static final int DEFAULT_CLIENT_PORT = 2876;

 /**The client's port number*/
 private int client_port_num;

 /**The server's port number*/

100

 private int server_port_num;

 /**The server's ip address*/
 private InetAddress server_ip_address;

 /**A reference to the client's controller object*/
 private ISimController controller;

 /**Boolean flag to note the current status of the client
network manager*/
 private boolean running;

 /**Boolean flag to note when we need to stop the client
network manager*/
 private boolean keepRunning;

 /**Socket to be used for communicating with the server*/
 private Socket socket;

 /**The communications thread that will be used to send
and receive messages from the server*/
 private SimCommsThread sct;

 /** Creates a new instance of SimClientNetworkManager */
 public SimClientNetworkManager(int port, ISimController
c)
 {
 this.client_port_num = port;
 this.controller = c;
 this.running = false;

 this.server_ip_address = null;
 this.server_port_num = this.DEFAULT_SERVER_PORT;
 this.sct = null;
 this.socket = null;
 }

 public SimClientNetworkManager()
 {
 this.client_port_num = this.DEFAULT_CLIENT_PORT;
 this.controller = null;
 this.running = false;

 this.server_ip_address = null;

101

 this.server_port_num = this.DEFAULT_SERVER_PORT;
 this.sct = null;
 this.socket = null;
 }

 public void setController(ISimController sc)
 {
 this.controller = sc;
 }

 /**
 * Set the port number that this client will use to
communicate to the server
 * with.
 * @param portNumber The port number to set the client
socket to
 *
 */
 public void setPort(int portNumber)
 {
 this.client_port_num = portNumber;

 }

 /**
 * Set the port number of the server that this client
will communicate with.
 * @param portNumber The port number of the server
 */
 public void setServerPort(int portNumber)
 {
 this.server_port_num = portNumber;
 }

 /**
 * Set the IP address of the server.
 * @param ipadd The IP address of the server.
 */
 public void setServerIPAddress(InetAddress ipadd)
 {
 this.server_ip_address = ipadd;
 }

 public int getServerPort()
 {

102

 return this.server_port_num;
 }

 public InetAddress getServerIPAddress()
 {
 return this.server_ip_address;
 }

 /**
 * Start the client network manager.
 */
 public void startNetworkManager()
 {
 //CREATE THE SOCKET TO THE SERVER
 try
 {
 this.socket = new Socket();
 this.socket.setKeepAlive(true);
 this.socket.connect(new
InetSocketAddress(this.server_ip_address,
this.server_port_num));

 }
 catch(IOException ioe)
 {
 this.controller.processError("UNABLE TO CONNECT
TO SERVER AT: "+this.server_ip_address.toString()+" ON PORT:
"+this.server_port_num);
 }

 //INSTANTIATE THE SIMCOMMSTHREAD
 this.sct = new SimCommsThread(this.socket,
((SimClientController)this.controller).getClientName(),
this.controller);
 this.sct.start();

 //pass the server our name and location information
 SimInternalMessage msg = new SimInternalMessage();
 msg.setMessageType(SimMessage.MESSAGETYPE.ADMIN);
 msg.setContent("CLIENT_NAME
"+((SimClientController)this.controller).getClientName());
 this.controller.processOutComms(msg);

 this.running = true;

 System.out.println("SENDING CLIENT NAME");

103

 }

 /**
 * Stop the network manager.
 */
 public void stopNetworkManager()
 {
 if(this.sct == null)
 {
 return;
 }
 //tell the server we are disconnecting
 SimMessage msg = new SimMessage();
 msg.setMessageType(SimMessage.MESSAGETYPE.ADMIN);
 msg.setContent("DISCONNECT");

 this.sct.sendMessage(msg);

 while(this.socket.isConnected())
 {

 }

 this.running = false;
 this.sct = null;
 }

 public boolean isRunning()
 {
 return this.running;
 }

 public int getPort()
 {
 return this.client_port_num;
 }

 public String getIPAddress()
 {
 if(this.socket.isConnected())
 {
 String ipaddress =
this.socket.getInetAddress().toString();
 int index = ipaddress.indexOf("/");
 if(index == -1)
 return ipaddress;

104

 else
 return ipaddress.substring(index+1);
 }

 return null;
 }

 /**
 * Send a message out into the simulated environment.
 * @param sm The message packet we will send out
 */
 public void sendMessage(SimMessage sm)
 {
 if(sm == null)
 System.out.println("NULL MESSAGE");
 else
 this.sct.sendMessage(sm);
 }

}

3. JFramClinetCommandGUI.java

package SimClient;

import Utilities.*;
import Utilities.ICommandUI;
import java.io.File;
import java.net.*;
import java.util.Calendar;
import java.util.Date;
import javax.swing.JOptionPane;
import java.text.SimpleDateFormat;

/**
 *
 * @author richard betancourt
 */
public class JFramClientCommandGUI extends
javax.swing.JFrame implements ICommandUI
{

105

 private static final String GREETING = "UNDERWATER
ACOUSTIC NETWORK CLIENT SIMULATOR, VERSION 0.2\nDEVELOPED BY
RICHARD BETANCOURT AND BRIAN LONG\n\n";

 private static final String DATE_FORMAT = "yyyy-MM-dd
HH:mm:ss";

 private static SimpleDateFormat sdf;

 /**The main simulation controller*/
 private SimClientController controller;

 private IProtocolStack bps;

 private SimClientNetworkManager scnm;

 /**A string which will be used to hold information
messages that are coming
 * back from the simulation controller and given to the
jEditorPane to display
 * for the users.
 */
 private String sim_info;

 /** Creates new form JFramClientCommandGUI */
 public JFramClientCommandGUI()
 {
 initComponents();

 /**Initialized the simulation controller*/
 this.scnm = new SimClientNetworkManager();

 this.controller = new SimClientController(this,
this.scnm);

 this.scnm.setController(this.controller);

 //this.bps = null;
 //= new BasicPingStack(controller,this,this.scnm);
 //if(this.bps == null)
 // System.out.println("BPS NULL IN CONSTRUCTOR");

 sim_info = this.GREETING;

 this.jEditorPane_InfoPane.setText(sim_info);

106

 this.sdf = new SimpleDateFormat(DATE_FORMAT);

 }

 /** This method is called from within the constructor to
 * initialize the form.
 * WARNING: Do NOT modify this code. The content of this
method is
 * always regenerated by the Form Editor.
 */
 // <editor-fold defaultstate="collapsed" desc="
Generated Code ">
 private void initComponents()
 {
 jScrollPane1 = new javax.swing.JScrollPane();
 jEditorPane_InfoPane = new
javax.swing.JEditorPane();
 jMenuBar1 = new javax.swing.JMenuBar();
 jFileMenu = new javax.swing.JMenu();
 jMenuItem_Exit = new javax.swing.JMenuItem();
 jClientMenu = new javax.swing.JMenu();
 jMenuItem_SetClientName = new
javax.swing.JMenuItem();
 jMenuItem_ClientPort = new javax.swing.JMenuItem();
 jMenuItem_ServerPort = new javax.swing.JMenuItem();
 jMenuItem_ServerIP = new javax.swing.JMenuItem();
 jMenuItem_Connect = new javax.swing.JMenuItem();
 jMenuItem_Disconnect = new javax.swing.JMenuItem();
 jMenuItem_SetLocation = new javax.swing.JMenuItem();
 jPingMenu = new javax.swing.JMenu();
 jMenuItem_SendPing = new javax.swing.JMenuItem();

setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON
_CLOSE);
 setTitle("UAN Sim Client");
 jEditorPane_InfoPane.setEditable(false);
 jScrollPane1.setViewportView(jEditorPane_InfoPane);

 jFileMenu.setText("File");
 jMenuItem_Exit.setText("Exit");
 jMenuItem_Exit.addActionListener(new
java.awt.event.ActionListener()
 {
 public void
actionPerformed(java.awt.event.ActionEvent evt)

107

 {
 jMenuItem_ExitActionPerformed(evt);
 }
 });

 jFileMenu.add(jMenuItem_Exit);

 jMenuBar1.add(jFileMenu);

 jClientMenu.setText("Client");
 jMenuItem_SetClientName.setText("Set Client Name");
 jMenuItem_SetClientName.addActionListener(new
java.awt.event.ActionListener()
 {
 public void
actionPerformed(java.awt.event.ActionEvent evt)
 {
 jMenuItem_SetClientNameActionPerformed(evt);
 }
 });

 jClientMenu.add(jMenuItem_SetClientName);

 jMenuItem_ClientPort.setText("Set Client Port");
 jMenuItem_ClientPort.addActionListener(new
java.awt.event.ActionListener()
 {
 public void
actionPerformed(java.awt.event.ActionEvent evt)
 {
 jMenuItem_ClientPortActionPerformed(evt);
 }
 });

 jClientMenu.add(jMenuItem_ClientPort);

 jMenuItem_ServerPort.setText("Set Server Port");
 jMenuItem_ServerPort.addActionListener(new
java.awt.event.ActionListener()
 {
 public void
actionPerformed(java.awt.event.ActionEvent evt)
 {
 jMenuItem_ServerPortActionPerformed(evt);
 }
 });

108

 jClientMenu.add(jMenuItem_ServerPort);

 jMenuItem_ServerIP.setText("Set Server IP Address");
 jMenuItem_ServerIP.addActionListener(new
java.awt.event.ActionListener()
 {
 public void
actionPerformed(java.awt.event.ActionEvent evt)
 {
 jMenuItem_ServerIPActionPerformed(evt);
 }
 });

 jClientMenu.add(jMenuItem_ServerIP);

 jMenuItem_Connect.setText("Connect to Server");
 jMenuItem_Connect.addActionListener(new
java.awt.event.ActionListener()
 {
 public void
actionPerformed(java.awt.event.ActionEvent evt)
 {
 jMenuItem_ConnectActionPerformed(evt);
 }
 });

 jClientMenu.add(jMenuItem_Connect);

 jMenuItem_Disconnect.setText("Disconnect From
Server");
 jMenuItem_Disconnect.addActionListener(new
java.awt.event.ActionListener()
 {
 public void
actionPerformed(java.awt.event.ActionEvent evt)
 {
 jMenuItem_DisconnectActionPerformed(evt);
 }
 });

 jClientMenu.add(jMenuItem_Disconnect);

 jMenuItem_SetLocation.setText("Set Client
Location");

109

 jMenuItem_SetLocation.addActionListener(new
java.awt.event.ActionListener()
 {
 public void
actionPerformed(java.awt.event.ActionEvent evt)
 {
 jMenuItem_SetLocationActionPerformed(evt);
 }
 });

 jClientMenu.add(jMenuItem_SetLocation);

 jMenuBar1.add(jClientMenu);

 jPingMenu.setText("Ping App");
 jMenuItem_SendPing.setText("Send Ping");
 jMenuItem_SendPing.addActionListener(new
java.awt.event.ActionListener()
 {
 public void
actionPerformed(java.awt.event.ActionEvent evt)
 {
 jMenuItem_SendPingActionPerformed(evt);
 }
 });

 jPingMenu.add(jMenuItem_SendPing);

 jMenuBar1.add(jPingMenu);

 setJMenuBar(jMenuBar1);

 javax.swing.GroupLayout layout = new
javax.swing.GroupLayout(getContentPane());
 getContentPane().setLayout(layout);
 layout.setHorizontalGroup(

layout.createParallelGroup(javax.swing.GroupLayout.Alignment
.LEADING)
 .addComponent(jScrollPane1,
javax.swing.GroupLayout.DEFAULT_SIZE, 400, Short.MAX_VALUE)
);
 layout.setVerticalGroup(

layout.createParallelGroup(javax.swing.GroupLayout.Alignment
.LEADING)

110

 .addComponent(jScrollPane1,
javax.swing.GroupLayout.DEFAULT_SIZE, 279, Short.MAX_VALUE)
);
 pack();
 }// </editor-fold>

 private void
jMenuItem_SetLocationActionPerformed(java.awt.event.ActionEv
ent evt)
 {
 String input;
 Location loc;
 input = JOptionPane.showInputDialog(this,"Enter
location
information","Location",JOptionPane.QUESTION_MESSAGE);
 while(true)
 {
 try
 {
 String[] inputarray = input.split(",");
 loc = new Location();

loc.setLatitude(Double.parseDouble(inputarray[0]));

loc.setLongitude(Double.parseDouble(inputarray[1]));

loc.setDepth(Integer.parseInt(inputarray[2]));
 break;
 }
 catch(LocationException le)
 {
 JOptionPane.showMessageDialog(this,"INVALID
INPUT");
 }
 }
 this.controller.setLocation(loc);
 }

 private void
jMenuItem_SetClientNameActionPerformed(java.awt.event.Action
Event evt)
 {
 String input;
 input = JOptionPane.showInputDialog(this,"Enter a
name for this client","Client
Name",JOptionPane.QUESTION_MESSAGE);

111

 this.controller.setClientName(input);
 }

 private void
jMenuItem_SendPingActionPerformed(java.awt.event.ActionEvent
evt)
 {
 String input;
 input = JOptionPane.showInputDialog(this,"Enter ID
of Node to Ping","Node ID",JOptionPane.QUESTION_MESSAGE);
 if(input == null)
 return;
 this.bps.processOutputAcousticSignal(input);

 }

 private void
jMenuItem_DisconnectActionPerformed(java.awt.event.ActionEve
nt evt)
 {
 this.scnm.stopNetworkManager();
 }

 private void
jMenuItem_ConnectActionPerformed(java.awt.event.ActionEvent
evt)
 {
 this.scnm.startNetworkManager();
 }

 private void
jMenuItem_ServerIPActionPerformed(java.awt.event.ActionEvent
evt)
 {
 InetAddress ipaddress;
 String input;
 boolean running = true;
 while(running)
 {
 input = JOptionPane.showInputDialog(this,"Enter
IP Address of Server","Enter IP
Address",JOptionPane.QUESTION_MESSAGE);
 if(input == null)
 {
 break;
 }

112

 else
 {
 try
 {
 ipaddress =
InetAddress.getByName(input);

 this.scnm.setServerIPAddress(ipaddress);
 running = false;

 }
 catch(UnknownHostException uhe)
 {

JOptionPane.showMessageDialog(this,"Invalid IP
Address","Invalid IP Address",JOptionPane.WARNING_MESSAGE);
 }
 }
 }
 }

 private void
jMenuItem_ServerPortActionPerformed(java.awt.event.ActionEve
nt evt)
 {
 int port_number;
 String input;
 while(true)
 {
 input = JOptionPane.showInputDialog(this,"Enter
a port number between 1 and 65535:","Enter
Port",JOptionPane.QUESTION_MESSAGE);
 if(input == null)
 {
 break;
 }
 else
 {
 try
 {
 port_number = Integer.parseInt(input);
 if(port_number <= 0 || port_number >=
65536)
 {

JOptionPane.showMessageDialog(this,"Not a valid port

113

number.", "Invalid port
number",JOptionPane.WARNING_MESSAGE);
 }
 else
 {

this.scnm.setServerPort(port_number);
 break;
 }
 }
 catch(NumberFormatException nfe)
 {
 JOptionPane.showMessageDialog(this,"Not
a number.","Invalid port
number",JOptionPane.WARNING_MESSAGE);
 }
 }
 }
 }

 private void
jMenuItem_ClientPortActionPerformed(java.awt.event.ActionEve
nt evt)
 {
 int port_number;
 String input;
 while(true)
 {
 input = JOptionPane.showInputDialog(this,"Enter
a port number between 1 and 65535:","Enter
Port",JOptionPane.QUESTION_MESSAGE);
 if(input == null)
 {
 break;
 }
 else
 {
 try
 {
 port_number = Integer.parseInt(input);
 if(port_number <= 0 || port_number >=
65536)
 {

JOptionPane.showMessageDialog(this,"Not a valid port

114

number.", "Invalid port
number",JOptionPane.WARNING_MESSAGE);
 }
 else
 {
 this.scnm.setPort(port_number);
 break;
 }
 }
 catch(NumberFormatException nfe)
 {
 JOptionPane.showMessageDialog(this,"Not
a number.","Invalid port
number",JOptionPane.WARNING_MESSAGE);
 }
 }
 }
 }

 private void
jMenuItem_ExitActionPerformed(java.awt.event.ActionEvent
evt)
 {
 this.scnm.stopNetworkManager();
 System.exit(0);
 }

 /**
 * @param args the command line arguments
 */
 public static void main(String args[])
 {
 java.awt.EventQueue.invokeLater(new Runnable()
 {
 public void run()
 {
 new
JFramClientCommandGUI().setVisible(true);
 }
 });
 }

 // Variables declaration - do not modify
 private javax.swing.JMenu jClientMenu;
 private javax.swing.JEditorPane jEditorPane_InfoPane;
 private javax.swing.JMenu jFileMenu;

115

 private javax.swing.JMenuBar jMenuBar1;
 private javax.swing.JMenuItem jMenuItem_ClientPort;
 private javax.swing.JMenuItem jMenuItem_Connect;
 private javax.swing.JMenuItem jMenuItem_Disconnect;
 private javax.swing.JMenuItem jMenuItem_Exit;
 private javax.swing.JMenuItem jMenuItem_SendPing;
 private javax.swing.JMenuItem jMenuItem_ServerIP;
 private javax.swing.JMenuItem jMenuItem_ServerPort;
 private javax.swing.JMenuItem jMenuItem_SetClientName;
 private javax.swing.JMenuItem jMenuItem_SetLocation;
 private javax.swing.JMenu jPingMenu;
 private javax.swing.JScrollPane jScrollPane1;
 // End of variables declaration

 public void errorMessageHandler(String msg)
 {
 this.sim_info += this.sdf.format(new
Date(System.currentTimeMillis())) + ">>> " + msg + "\n";
 this.jEditorPane_InfoPane.setText(this.sim_info);
 }

 public void generalMessageHandler(String msg)
 {
 this.sim_info += this.sdf.format(new
Date(System.currentTimeMillis())) + ">>> " + msg + "\n";
 this.jEditorPane_InfoPane.setText(this.sim_info);
 }

 public String getUserInput(String request, String...
choices)
 {
 return null;
 }

 public void setProtocolStack(IProtocolStack ips)
 {
 this.bps = ips;
 }

}

4. BasicPingStack.java

package SimClient;

116

import Utilities.*;
import java.net.*;
import java.io.*;

/**
 *
 * @author richard betancourt
 */
public class BasicPingStack extends Thread implements
IProtocolStack
{

 private ISimController controller;

 private ICommandUI cui;

 private ISimNetworkManager netmngr;

 private CollisionDetection cd;

 /** Creates a new instance of BasicPingStack */
 public BasicPingStack(ISimController cont, ICommandUI c,
ISimNetworkManager n)
 {
 this.controller = cont;
 this.cui = c;
 this.netmngr = n;
 this.cd = new CollisionDetection(this.cui);
 this.cd.setProtocolStack(this);
 this.cd.start();

 }

 public void processInputAcousticSignal(AcousticSignal
as)
 {
 if(this.cd.setAcousticSignal(as))
 {
 cd.interrupt();
 }
 }

 public void processOutputAcousticSignal(Object o)
 {
 processLevel1Out((String)o);

117

 }

 public void processLevel1In(AcousticSignal as)
 {
 System.out.println("IN PROCESS LEVEL 1 IN");
 //TODO: PROCESS PING
 //For the purposes of this small demo protocol
stack, level one processing does nothing
 //except report that a ping was received to the
user.
 this.cui.generalMessageHandler("PING RECEIVED FROM:
"+as.getData().getSrcName());
 }

 public void processLevel1Out(String dest_name)
 {
 Packet p = new Packet(Packet.DATA,null);

p.setSrcName(((SimClientController)this.controller).getClien
tName());
 AcousticSignal newAs = new AcousticSignal();
 newAs.setData(p);
 newAs.setFrequency(33.0);
 newAs.setPower(250);
 newAs.setTransTime(System.currentTimeMillis());
 SimInternalMessage sim = new SimInternalMessage();
 sim.setContent(newAs);
 sim.setMessageType(SimMessage.MESSAGETYPE.COMMS);
 this.controller.processOutComms(sim);
 }

}

118

THIS PAGE INTENTIONALLY LEFT BLANK

119

LIST OF REFERENCES

[1] F. Akyildiz, D. Pompili, and T. Melodia. Underwater
Acoustic Sensor Networks: Research Challenges. Ad Hoc
Networks Journal (Elseviier), pp. 257-279, March 2005.

[2] Jose Coelho, “Underwater Acoustic Networks: Evaluation

of the Impact of Media Access Control on Latency, in a
Delay Constrained Network,” Master’s Thesis (MS-CS),
Naval Postgraduate School, Monterey, California, March
2005.

[3] Brian Long, “Implementation of a Distributed Time Based

Simulation of Underwater Acoustic Networking Using
Java,” Master’s Thesis (MS-CS), Naval Postgraduate
School, Monterey, California, September 2006.

[4] J. G. Proakis, E. M. Sozer, J. A. Rice, and M.

Stojanovic, Shallow Water Acoustic Networks, IEEE
Communication Magazine, Vol. 39, No. 11, pp. 114-119,
November 2001.

[5] J. G. Proakis, E. M. Sozer, and M. Stojanovic,

Underwater Acoustic Networks, IEEE Journal of Oceanic
Engineering, Vol. 25, No. 1, pp. 72-83, January 2000.

[6] S. G. Chappell, R. J. Komerska, A Simulation

Environment for Testing and Evaluating Multiple
Cooperating Solar-Powered AUVs, Proceeding of the
MTS/IEEE Oceans 2006 Conference, September 2006.

[7] S. G. Chappell, R. J. Komerska, An Environment for

High-Level Multiple AUV Simulation and Communication,
http://www.ausi.org/publications/clout2000.pdf, April
2007.

[8] The Navy Unmanned Undersea Vehicle (UUV) Master Plan,

November 2004, http://www.navy.mil/navydata/
technology/uuvmp.pdf, April 2007.

[9] Paul C. Etter, Underwater Acoustic Modeling and

Simulation, 3rd Ed., Spon Press, New York, NY. 2003.

120

[10] Alan B. Coppens, Austin R. Frey, Lawrence E. Kinsler,
James V. Sanders, Fundamentals of Acoustics, 4th Ed.
John Wiley & Sons, New York, NY. 2000.

[11] Andrew E. Kramer, “Russia Set to Plant Flag on Artic

Seabed.” New York Times, August 2, 2007.

[12] J. G. Proakis, E. M. Sozer, and M. Stojanovic,

Initialization and Routing Optimization for Adhoc
Underwater Acoustic Networks, Proceeding of Opnetwork
2000.

[13] The Ocean Acoustics Library,

http://oalib.hlsresearch.com/, April 2007.

[14] J. G. Proakis, E. M. Sozer, and M. Stojanovic, Design

and Simulation of an Underwater Acoustic Local Area
Network, Proceeding of Opnetwork 1999.

[15] Geoffrey Xie, John Gibson, Leopoldo Diaz-Gonzalez,

Incorporating Realistic Acoustic Propagation Models in
Simulation of Underwater Acoustic Networks: A
Statistical Approach, MTS/IEEE Oceans Conference,
September 2006.

[16] L. J. Solorzano, “Underwater Acoustic Networks: An

Acoustic Propagation Model for Simulation of Underwater
Acoustic Networks,” Masters Thesis (MS-CS), Naval
Postgraduate School, Monterey, California, December
2005.

[17] L. Prechelt, An Empirical Comparison of Seven

Programming Languages, Computer, Vol. 33, No. 10, pp.
23-29, October 2000.

121

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

